75
Views
2
CrossRef citations to date
0
Altmetric
Original

Modeling Environment for Numerical Simulation of Applied Electric Fields on Biological Cells

, &
Pages 239-250 | Published online: 07 Jul 2009

References

  • Abidor, I. G., Arakelyan, L. V., , et al. (1979). Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. Bioelectrochemistry 6:37–52.
  • Atkins, P. W. (1992). Physical Chemistry. Oxford: Oxford University Press, 837 pp.
  • Barry, P. H., Lynch, J. W. (1991). Liquid junction potentials and small cell effects in patch-clamp analysis. J. Membrane Biol. 121:101–117.
  • Glaser, R. W., Leikin, S. L., , et al. (1988). Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochem. Biophys. Acta 940:275–287.
  • Hoffmann, G. A., Dev, S. B., Dimmer, S. (1996). Electroporation therapy: a new approach for the treatment of head and neck cancer. IEEE Eng. Med. Biol. 15:124–132.
  • Kinosita, K. Jr., Hibino, M., , et al. (1992). Events of membrane electroporation visualized on a time scale from microsecond to seconds. In: Chang, D. C., Chassy, B. M., ., eds. Guide to Electroporation and Electrofusion. San Diego: Academic Press, pp. 29–46.
  • Kinosita, K. Jr., Tsong, T. Y. (1977). Voltage-induced pore formation and hemolysis of human erythrocytes. Proc. Natl. Acad. Sci. USA 74:1923–1927.
  • Mir, L. M., Orlowski, S. (1999). Mechanisms of electrochemotherapy. Adv. Drug Delivery Rev. 35:107–118.
  • Neumann, E., Kakorin, S., Toensing, K. (2000). Principles of membrane electroporation and transport of macromolecules. In: Jaroszeski, M. J., Heller, R., Gilbert, R., eds. Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery. Totowa: Humana Press, pp. 1–35.
  • Ramos, A., Raizer, A., Marques, J. L. B. (2003). A new computational approach for electrical analysis of biological tissues. Bioelectrochemistry 5758:1–12.
  • Ramos, A., Suzuki, D. O. H., Marques, J. L. B. (2004). Numerical simulation of electroporation in spherical cells. Artif. Org. 28:357–361.
  • Schwan, H. P. (1957). Electric properties in tissue and cell suspensions. Adv. Biol. Med. Phys. 5:147–209.
  • Semrov, D., Miklavcic, D. (2000). Numerical modelling for in vivo electroporation. In: Jaroszeski, M. J., Heller, R., Gilbert, R., eds. Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery. Totowa: Humana Press, pp. 63–97.
  • Stewart, D. A. Jr., Gowrishankar, T. R., , et al. (2005). Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method. IEEE Trans. Biomed. Eng. 52:1643–1653.
  • Valencic, V., Krasna, A., , et al. (1994). Numerical calculation and comparation of electromagnetic field parameters inside biological tissue. Bioelectrochemistry 35:115–119.
  • Valic, B., Golzio, M., , et al. (2003). Effect of electric field induced transmembrane potential os spheroidalls: theory and experiment. Eur. Biophys. J. 32:519–528.
  • Weaver, J. C., Chizmadzhev, Y. A. (1996). Theory of electroporation: a review. Bioelectrochemistry 41:135–160.
  • Weaver, J. C., Mintzer, R. A. (1981). Decreased bilayer stability due to transmembrane potentials. Phys. Lett. 86A:57–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.