33
Views
0
CrossRef citations to date
0
Altmetric
Original

IL-8 Release of HL-60 Cells Treated with Electric Currents of Different Wave Forms

&
Pages 191-205 | Published online: 07 Jul 2009

References

  • Balcer-Kubiczek, E. K., Harrison, G. H., , et al. (2000). Expression analysis of human HL60 cells exposed to 60 Hz square- or sine-wave magnetic fields. Rad. Res. 153:670–678.
  • Bardos, D. C., Thompson, C. J., , et al. (2000). Nonlinear cell response to strong electric fields. Phys. Med. Biol. 45:1965–1988.
  • Bartussek, R., Hänggi, P., Jung, P. (1994). Stochastic resonance in optical bistable systems. Phys. Rev. E49:3930–3939.
  • Berg, H., Zhang, L. (1993). Electrostimulation in cell biology by low-frequency electromagnetic fields. Electro. Magnetobiol. 12:147–163.
  • Collins, S. J., Ruscetti, F. W., , et al. (1979). Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J. Exp. Med. 149:969–973.
  • Dertinger, H., Weibezahn, K. F. (2002). Treatment of psoriasis with interferential current – new perspectives of electromagnetic therapy. Akt. Dermatol. 28:165–169.
  • Gapeyev, A. B., Sokolov, P. A., Chemeris, N. K. (2001). Response of membrane-associated calcium signaling systems of the cell to extremely low-frequency external signals with different waveform parameters. Electro. Magnetobiol. 20:107–122.
  • Gierschik, P., Sidiropoulos, D., Jakobs, K. H. (1989). Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J. Biol. Chem. 264:21470–21473.
  • Goodman, E. M., Greenebaum, B., Marron, M. T. (1979). Bioeffects of extremely low frequency electromagnetic fields: variation with intensity, waveform, and individual or combined electric and magnetic fields. Rad. Res. 78:485–501.
  • Goodman, E. M., Greenebaum, B., Marron, M. T. (1995). Effects of electromagnetic fields on molecules and cells. Int. Rev. Cyt. 158:279–338.
  • Goodman, R., Blank, M., , et al. (1994). Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 33:115–120.
  • Goodman, R., Shirley-Henderson, A. (1991). Transcription and translation in cells exposed to extremely low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 25:335–355.
  • Goodman, R., Wei, L. X., , et al. (1992). Exposure to electric and magnetic (EM) fields increases transcripts in HL-60 cells: does adaptation to EM fields occur? Bioelectrochem. Bioenerg. 29:185–192.
  • Guzelsu, N., Salkind, A. J., , et al. (1994). Effect of electromagnetic stimulation with different waveforms on cultured chick tendon fibroblasts. Bioelectromagnetics 15:115–131.
  • Junkersdorf, B., Bauer, H., Gutzeit, H. O. (2000). Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans. Bioelectromagnetics 21:100–106.
  • Klinker, J. F., Wenzel-Seifert, K., Seifert, R. (1996). G-protein-coupled receptors in HL-60 human leukemia cells. Gen. Pharmac. 27:33–54.
  • Knedlitschek, G., Noszvai-Nagy, M., , et al. (1994). Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities. Radiat. Environ. Biophys. 33:141–147.
  • Kruglikov, I. L., Dertinger, H. (1994). Stochastic resonance as a possible mechanism of amplification of weak electric signals in living cells. Bioelectromagnetics 15:539–547.
  • Lacy-Hulbert, A., Metcalfe, J. C., Hesketh, R. (1998). Biological responses to electromagnetic fields. FASEB J. 12:395–420.
  • Lacy-Hulbert, A., Wilkins, R. C., , et al. (1995). No effect of 60 Hz electromagnetic fields on MYC or β -actin expression in human leukemic cells. Rad. Res. 144:9–17.
  • Leet, C. S. F., Vincan, E., Thomas, R. J. S. (1999). Lipopolysaccharide-induced priming of the human neutrophil is associated with a change in phosphotyrosine phosphatase activity. Int. J. Biochem. Cell. Biol. 31:585–593.
  • Litovitz, T. A., Montrose, C. J., , et al. (1994). Superimposing spatially coherent electromagnetic noise inhibits field-induced abnormalities in developing chick embryos. Bioelectromagnetics 15:105–113.
  • Litovitz, T. A., Penafiel, L. M., , et al. (1997). Bioeffects induced by exposure to microwaves are mitigated by superposition of ELF noise. Bioelectromagnetics 18:422–430.
  • Mielke, A. (2000). Noise induced stability in fluctuating, bistable potentials. Phys. Rev. Lett. 84:818–821.
  • Morehouse, C. A., Owen, R. D. (2000). Exposure to low-frequency electromagnetic fields does not alter HSP70 expression or HSF-HSE binding in HL60 cells. Rad. Res. 153:658–662.
  • Petin, V. G., Kim, J. K., , et al. (2002). Some general regularities of synergistic interaction of hyperthermia with various physical and chemical inactivating agents. Int. J. Hyperthermia 18:40–49.
  • Pilla, A. A., Muehsam, D. J., , et al. (1999). EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters. Bioelectrochem. Bioenerg. 48:27–34.
  • Pipkin, J. L., Hinson, W. G., , et al. (1999). Induction of stress proteins by electromagnetic fields in cultured HL-60 cells. Bioelectromagnetics 20:347–357.
  • Polk, C., Postow, E. (1986). Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, FL: CRC Press.
  • Prossnitz, E. R., Ye, R. D. (1997). The N-formyl peptide receptor: A model for the study of chemoattractant receptor structure and function. Pharmacol. Ther. 74:73–102.
  • Rais, S., Pedruzzi, E., , et al. (1998). Priming of phosphatidic acid production by staurosporine in f-met-leu-phe-stimulated human neutrophils – Correlation with respiratory burst. Cell Signal 10:121–129.
  • Repacholi, M. T., Greenebaum, B. (1999). Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20:133–160.
  • Shi, B., Farboud, B., , et al. (2003). Power-line frequency electromagnetic fields do not induce changes in phosphorylation, localization, or expression of the 27-kilodalton heat shock protein in human keratinocytes. Environ. Health Persp. 111:281–287.
  • Sontag, W. (1997). Two experimental systems for exposure of cells to extremely low frequency electric fields suitable for in situ measurements of fluorescence signals. Bioelectrochem. Bioenerg. 44:141–149.
  • Sontag, W. (2001). Release of mediators by DMSO-differentiated HL-60 cells exposed to electric interferential current and the requirement of biochemical pre-stimulation. Int. J. Radiat. Biol. 77:723–734.
  • Sontag, W. (2004). Response of cyclic AMP by DMSO-differentiated HL-60 cells exposed to electric interferential current after prestimulation. Bioelectromagnetics 25:176–184.
  • Sontag, W., Dertinger, H. (1998). Response of cytosolic calcium, cyclic AMP, and cyclic GMP in dimethylsulfoxide-differentiated HL-60 cells to modulated low frequency electric currents. Bioelectromagnetics 19:452–458.
  • Sontag, W., Weibezahn, K. F. (2002). Influence of low-frequency electric fields on proliferation and IL-8 release of HL-60 cells. Electromagnetic Biol. Med. 21:119–128.
  • ter Haar, G., Walling, J., , et al. (1988). The effect of combined heat and ultrasound on multicellular tumour spheroids. Int. J. Radiat. Biol. 53:813–825.
  • Tuinstra, R., Goodman, E., Greenebaum, B. (1998). Protein kinase C activity following exposure to magnetic field and phorbol ester. Bioelectromagnetics 19:469–476.
  • Urano, M., Kahn, J., , et al. (1990). The cytotoxic effect of cis- diamminedichloroplatinum (II) on culture chinese hamster ovary cells at elevated temperatures: arrhenius plot analysis. Int. J. Hyperthermia 6:581–590.
  • Walleczek, J., Liburdy, R. P. (1990). Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Lett. 271:157–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.