164
Views
27
CrossRef citations to date
0
Altmetric
Original

Cytokine Release from Osteoblasts in Response to Different Intensities of Pulsed Electromagnetic Field Stimulation

, , &
Pages 153-165 | Published online: 07 Jul 2009

References

  • Bassett, C. A. L., Mitchell, S. N., Gaston, S. R. (1981). Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J. Bone Joint Surg. 63A:511–523.
  • Bassett, C. A. L., Pilla, A. A., Pawluk, R. J. (1977). A non-operative salvage of surgically resistant pseudoarthroses and non-unions by pulsing electromagnetic fields. Clin. Orthop. 124:128–143.
  • Berg, H. (1993). Electrostimulation of cell metabolism by low frequency electric and electromagnetic fields. Bioelectrochem. Bioenerg. 31:1–25.
  • Bodamyali, T., Bhatt, B., , et al. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 250(2):458–461.
  • Bonewald, L. F., Mundy, G. R. (1989). Role of transforming growth factor beta in bone remodeling: a review. [Review] [64 refs] Connect. Tissue Res. 23(2–3):201–208.
  • Bonewald, L. F., Mundy, G. R. (1990). Role of transforming growth factor-beta in bone remodeling. [Review] [126 refs] Clin. Orthop. 250:261–276.
  • Bostrom, M. P., Asnis, P. (1998). Transforming growth factor beta in fracture repair. [Review] [46 refs] Clin. Orthop. 355 Suppl:S124–S131.
  • Centrella, M., McCarthy, T. L., Canalis, E. (1987). Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J. Biol. Chem. 262(6):2869–2874.
  • Chang, K., Chang, W. H. (2003). Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: a prostaglandin E2-associated process. Bioelectromagnetics 24:189–198.
  • Chang, K., Chang, W. H., Wu, M., Shih, C. (2003). Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics 24:432–439.
  • Chang, W. H., Hwang, I. M., Mak, O. T. (2000). Effects of prostaglandin E2 on bone fracture healing enhanced by capacitively coupled electric field and pulsed electromagnetic field. J. Med. Biol. Eng. 20(4):225–230.
  • Chyun, Y. S., Raisz, L. G. (1984). Stimulation of bone formation by prostaglandin E2. Prostaglandins 27(1):97–103.
  • Cleary, S. F. (1993). A review of in vitro studies: low-frequency electromagnetic fields. Amer. Ind. Hyg. Assoc. J. 54(4):178–185.
  • Collins, D. A., Chambers, T. J. (1991). Effect of prostaglandins E1, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures. J. Bone Miner. Res. 6(2):157–164.
  • Collins, D. A., Chambers, T. J. (1992). Prostaglandin E2 promotes osteoclast formation in murine hematopoietic cultures through an action on hematopoietic cells. J. Bone Miner. Res. 7(5):555–561.
  • Cossarizza, A., Monti, D., , et al. (1989). DNA repair after gamma irradiation in lymphocytes exposed to low-frequency pulsed electromagnetic fields. Radiat. Res. 118(1):161–168.
  • De Mattei, M., Caruso, A., , et al. (1999). Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20(3):177–182.
  • Heermeier, K., Spanner, M., , et al. (1998). Effects of extremely low frequency electromagnetic field (EMF) on collagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells. Bioelectromagnetics 19(4):222–231.
  • High, W. B. (1987). Effects of orally administered prostaglandin E-2 on cortical bone turnover in adult dogs: A histomorphometric study. Bone 8(6):363–373.
  • Ho, M. L., Chang, J. K., , et al. (1999). Characteristics of primary osteoblast culture derived from rat fetal calvaria. Kaohsiung J. Med. Sci. 15(5):248–255.
  • Jee, W. S., Mori, S., Li, X. J., Chan, S. (1990). Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone 11(4):253–266.
  • Jee, W. S., Veno, K., Deng, Y. P., Woodbury, D. M. (1985). The effects of prostaglandin E2 in growing rats: Increased metaphyseal hard tissue and cortico-endosteal bone formation. Calcif. Tissue Int. 37(2):148–157.
  • Kassem, M. (1997). Cellular and molecular effects of growth hormone and estrogen on human bone cells. APMIS Suppl. 71(105):1–29.
  • Kassem, M., Kveiborg, M., Eriksen, E. F. (2000). Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur. J. Clin. Invest. 30(5):429–437.
  • Kawaguchi, H., Pilbeam, C. C., Harrison, J. R., Raisz, L. G. (1995). The role of prostaglandins in the regulation of bone metabolism. Clin. Orthop. Relat. Res. 331:36–46.
  • Khalil, A. M., Qassem, W. (1991). Cytogenetic effects of pulsing electromagnetic field on human lymphocytes in vitro: chromosome aberrations, sister-chromatid exchanges and cell kinetics. Muta. Res. 247(1):141–146.
  • Klein, D. C., Raisz, L. G. (1970). Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86(6):1436–1440.
  • Li, J., Chang, W. H., Liu, H. C., Ruaan, R. C., Lin, A., Wen, J. H. (2003). Optimum parameters of specific 7.5 Hz single pulsed electromagnetic field stimulation on osteoblasts growth. Electromagn. Biol. Med. 22(2):87–101.
  • Li, X. J., Jee, W. S., Li, Y. L., Patterson-Buckendahl, P. (1990). Transient effects of subcutaneously administered prostaglandin E2 on cancellous and cortical bone in young adult dogs. Bone 11(5):353–364.
  • Linkhart, T. A., Mohan, S., Baylink, D. J. (1996). Growth factors for bone growth and repair: IGF, TGF beta and BMP. [Review] [96 refs] Bone 19(1 Suppl):1S–12S.
  • Nagai, M., Suzuki, Y., Ota, M. (1993). Systematic assessment of bone resorption, collagen synthesis, and calcification in chick embryonic calvaria in vitro: effects of prostaglandin E2. Bone 14(4):655–659.
  • Nagata, T., Kaho, K., Nishikawa, S., Shinohara, H., Wakano, Y., Ishida, H. (1994). Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcif. Tissue Int. 55(6):451–457.
  • Peter, S. J., Lu, L., Kim, D. J., Stamatas, G. N., Miller, M. J., Yaszemski, M. J., Mikos, A. G. (2000). Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J. Biomed. Mater. Res. 50(3):452–462.
  • Rosen, D. M., Stempien, S. A., Thompson, A. Y., Seyedin, S. M. (1988). Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J. Cell Physiol. 134(3):337–346.
  • Saffar, J. L., Leroux, P. (1988). Role of prostaglandins in bone resorption in a synchronized remodeling sequence in the rat. Bone 9(3):141–145.
  • Satake, T. (1990). Effect of pulsed electromagnetic fields (PEMF) on osteoblast-like cells. Alterations of intracellular Ca2+. Kanagawa Shigaku 24(4):692–701.
  • Shih, M. S., Norridin, R. W. (1986). Effects of prostaglandins on regional remodeling changes during tibial healing in beagles: a histomorphometric study. Calcif. Tissue Int. 39(3):191–197.
  • Siggelkow, H., Rebenstorff, K., Kurre, W., Niedhart, C., Engel, I., Schulz, H., Atkinson, M. J., Hufner, M. (1999). Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. J. Cell Biochem. 75(1):22–35.
  • Sollazzo, V., Traina, G. C., DeMattei, M., Pellati, A., Pezzetti, F., Caruso, A. (1997). Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields. Bioelectromagnetics 18(8):541–547.
  • Sporn, M. B., Roberts, A. B. (1989). Transforming growth factor-beta. Multiple actions and potential clinical applications [clinical conference]. [Review] [28 refs] JAMA 262(7):938–941.
  • Tashjian, A. H. Jr., Voelkel, E. F., Lazzaro, M., Goad, D., Bosma, T., Levine, L. (1987). Tumor necrosis factor-alpha (cachectin) stimulates bone resorption in mouse calvaria via a prostaglandin-mediated mechanism. Endocrinology 120(5):2029–2036.
  • Tsai, C. L., Chang, W. H., Liu, T. K., Wu, K. H. (1991). Additive effects of prostaglandin E2 and pulsed electromagnetic fields on fracture healing. Chinese J. Physiol. 34:201–211.
  • Urano, T., Yashiroda, H., Muraoka, M., Tanaka, K., Hosoi, T., Inoue, S., Ouchi, Y., Toyoshima, H. (1999). p57(Kip2) is degraded through the proteasome in osteoblasts stimulated to proliferation by transforming growth factor beta1. J. Biol. Chem. 274(18):12197–121200.
  • Vander Molen, M. A., Donahue, H. J., Rubin, C. T., McLeod, K. J. (2000). Osteoblastic networks with deficient coupling: differential effects of magnetic and electric field exposure. Bone 27(2):227–231.
  • Vander Plas, A., Nijweide, P. J. (1992). Isolation and purification of osteocytes. J. Bone Miner. Res. 7(4):389–396.
  • Welch, R. D., Johnston, C. E., 2nd, Waldron, M. J., Poteet, B. (1993). Intraosseous infusion of prostaglandin E sub 2 in the caprine tibia. J. Orthop. Res. 11(1):110–121.
  • Wrana, J. L., Maeno, M., Hawrylyshyn, B., Yao, K. L., Domenicucci, C., Sodek, J. (1988). Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations. J. Cell Biol. 106(3):915–924.
  • Yang, R. S., Chang, W. H., Liu, T. K., Liu, H. C. (1994). Clinical evaluation of nonunion and delayed union by a specific parameter electrical stimulation. JJBERS 8:117–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.