229
Views
50
CrossRef citations to date
0
Altmetric
Original

Effects of Different Extremely Low-Frequency Electromagnetic Fields on Osteoblasts

, , &
Pages 167-177 | Published online: 07 Jul 2009

References

  • Aaron, R. K., Ciombor, D. M. (1996). Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J. Orthop. Res. 14:582–589.
  • Aaron, R. K., Ciombor, D. M., , et al. (1999). Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-β1 expression. Bioelectromagnetics 20:453–458.
  • Bassett, C. A. L., Pilla, A. A., Pawluk, R. J. (1977). A non-operative salvage of surgically-resistent pseudoarthroses and non-unions by pulsing electromagnetic fields. A preliminary report. Clin. Orthon. 124:128–142.
  • Bodamyali, T., Bhatt, B., , et al. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 250(2):458–461.
  • Borsalino, G., Bagnacani, M., , et al. (1988). Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin. Orthop. 237:256–263.
  • Brighton, C. T., Shaman, P., , et al. (1995). Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin. Orthop. 321:223–234.
  • Brighton, C. T., Wang, W., , et al. (2001). Signal transduction in electrically stimulated bone cells. J. Bone Joint Surg. [AM] 83(10):1514–1523.
  • Chang, W. H., Chen, L. T., , et al. (2004). Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25:457–465.
  • Del-Re, B., Bersani, F., Agostini, C., , et al. (2004). Various effects on transposition activity and survival of Escherichia coli cells due to different ELF-MF signals. Radiat. Environ. Biophys. 43(4):265–270.
  • De Mattei, M., Caruso, A., , et al. (1999). Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20:177–182.
  • De Mattei, M., Gagliano, N., , et al. (2005). Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics 26:207–214.
  • Denizot, F., Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. J. Immunol. Meth. 89:271–277.
  • Diniz, P., Shomura, K., , et al. (2002). Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23:398–405.
  • Eyres, K. S., Saleh, M., Kanis, J. A. (1996). Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening. Bone 18(6):505–509.
  • Fitzsimmons, R. J., Farley, J. R., , et al. (1989). Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-amplitude, low-frequency electric field: evidence for dependence on increased mitogen activity released into culture medium. J. Cell. Physiol. 139(3):586–591.
  • Gartland, A., Buckley, K. A., , et al. (2003). P2 receptors in bone-modulation of osteoclast formation and activity via P2X7 activation. Critical Rev. in Eukaryotic Gene Expression 13:237–242.
  • Katsir, G., Baram, S. C., Parola, A. H. (1998). Effect of sinusoidally varying magnetic fields on cell proliferation and adenosine deaminase specific activity. Bioelectromagnetics 19:46–52.
  • Khatib, L., Golan, D. E., Cho, M. (2004). Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts. FASEB J18:1903–1905.
  • Lohmann, C. H., Schwartz, Z., , et al. (2000). Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J. Orthop. Res. 18:637–646.
  • Lohmann, C. H., Schwartz, Z., , et al. (2003). Pulsed electromagnetic field affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J. Orthop. Res. 21:326–334.
  • Matsuzaka, K., Walboomers, X. F., , et al. (1999). The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro. Biomaterials 20:1293–1301.
  • McLeod, K. J., Collazo, L. (2000). Suppression of a differentiation response in MC-3T3-E1 osteoblast-like cells by sustained, low-level, 30 Hz magnetic-field exposure. Radiat. Res. 153:706–714.
  • Owen, T. A., Aronow, M., , et al. (1990). Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Pysiol. 143:420–430.
  • Ozawa, H., Abe, E., , et al. (1989). Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (MC3T3-E1) by a mechanism involving calcium ions. J. Cell. Physiol. 138(3):477–483.
  • Perizzolo, D., Lacefield, W. R., Brunette, M. D. (2001). Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite and titanium-coated micromachined surfaces. J. Biomed. Mater. Res. 56(4):494–503.
  • Santini, M. T., Rainaldi, G., , et al. (2003). Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG-63 and Saos-2). Bioelectromagnetics 24:327–338.
  • Simmons, J. W., Mooney, V., Thacker, I. (2004). Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Amer. J. Orthop. 33(1):27–30.
  • Sollazzo, V., Traina, G. C., , et al. (1997). Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields. Bioelectromagnetics 18(8):541–547.
  • Yamaguchi, D. T., Huang, J., , et al. (2002). Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J. Cell. Physiol. 190(2):180–188.
  • Zhuang, H. M., Wang, W., , et al. (1997). Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving Calcium/Calmodulin pathway. Biochem. Biophys. Res. Commun. 237:225–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.