1,361
Views
129
CrossRef citations to date
0
Altmetric
Original

Expanding Use of Pulsed Electromagnetic Field Therapies

Pages 257-274 | Published online: 07 Jul 2009

References

  • Adair, R. (1992). Criticism of Lednev's mechanism for the influence of weak magnetic fields on biosystems. Bioelectromagnetics 13:231.
  • Adey, W. R. (1986). The sequence and energetics of cell membrane transducing coupling to intracellular enzyme systems. Bioelectrochem. Bioenerg. 15:447–456.
  • Adey, W. R. (2004). Potential therapeutic application of nonthermal electromagnetic fields: ensemble organization of cells in tissue as a factor in biological tissue sensing. In: Rosch, P. J., Markov, M. S., eds. Bioelectromag. Med. New York: Marcel Dekker, pp. 1–15.
  • Ayrapetyan, S., Markov, M., eds. (2006). Bioelectromagnetics: Current Concepts. Stuttgart: Springer.
  • Barnes, F., Greenebaum, B., eds. (2006). Handbook of Biological Effects of Electromagnetic Fields. 3rd ed. Boca Raton, FL: CRC Press.
  • Bassett, C. A. L., Pawluk, R. J., Pilla, A. A. (1974). Acceleration of fracture repair by electromagnetic fields. Ann. NY Acad. Sci. 238:242–262.
  • Bassett, C. A. L., Pilla, A. A., Pawluk, R. (1977). A non surgical salvage of surgically-resistant pseudoarthroses and non unions by pulsing electromagnetic fields. Clin. Orthop. 124:117–131.
  • Bental, R. H. C. (1986). Low-level pulsed radiofrequency fields and the treatment of soft-tissue injuries. Bioelectrochem. Bioenerg. 16:531–548.
  • Bianco, B., Chiabrera, A. (1992). From the Langevin–Lorentz to the Zeeman model of electro-magnetic effects on ligand-receptor binding. Bioelectrochem. Bioenerg. 28:355–365.
  • Blackman, C. F., Blanchard, J. P., , et al. (1995). The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. FASEB J. 9:547–551.
  • Blanchard, J. P., Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238.
  • Canedo-Dorantes, L., Garcia-Cantu, R., , et al. (2002). Healing of chronic arterial and venous leg ulcers with systemic electromagnetic fields. Arch. Med. Res. 33:281–289.
  • Comorosan, S., Vasilco, R., , et al. (1993). The effect of Diapulse therapy on the healing of decubitus ulcer. Rom. J. Physiol. 30:41–45.
  • Edmonds, D. T. (1993). Larmor precession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochem. Bioenerg. 30:3–12.
  • Engstrom, S. (1996). Dynamic properties of Lednev's parametric resonance mechanism. Bioelectromagnetics 17:58–70.
  • Engstrom, S., Markov, M. S., , et al. (2002). Effects of non uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics 23:475–479.
  • Ericsson, A. D., Hazlewood, C. F., , et al. (2004). Specific Biochemical changes in circulating lymphocytes following acute ablation of symptoms in Reflex Sympathetic Dystrophy (RSD): a pilot study. In: Kostarakis, P., ed. Proceedings of 3rd International Workshop on Biological Effects of EMF. Kos, Greece, October 4–8, pp. 683–688.
  • Fitzsimmons, R. J., Ryaby, J. T., , et al. (1994). Combined magnetic fields increase net calcium flux in bone cells. Calcif. Tissue Intl. 55:376–380.
  • Foley-Nolan, D., Barry, C., , et al. (1990). Pulsed high frequency (27 MHz) Electromagnetic therapy for persistent neck pain: a double blind placebo-controlled study of 20 patients. Orthopedics 13:445–451.
  • Gardner, S. E., Frantz, R. A., Schmidt, F. L. (1999). Effect of electrical stimulation on chronic wound healing: a meta-analysis. Wound Rep. Regen. 7:495–503.
  • Gilbert, W. (1600). De Magnete. Translated by P. F. Mottelay. New York: Dover Publications, 1893.
  • Ginsburg, A. J. (1934). Ultrashort radio waves as a therapeutic agent. Med. Record 19:1–8.
  • Harden, N., Ramble, T., , et al. (2007). Prospective, randomized, single-blind, sham treatment controlled study of the safety and efficacy of an electromagnetic field device for the treatment of chronic low back pain: a pilot study. Pain Practice (in press).
  • Hazlewood, C. F., Markov, M. S. (2006). Magnetic fields for relief of myofascial and/or low back pain through trigger points. In: Kostarakis, P., ed. Proceedings of Forth International Workshop Biological Effects of Electromagnetic Fields. Crete, 16–20 October, pp. 475–483.
  • Ieran, M., Zaffuto, S., , et al. (1990). Effect of low frequency electromagnetic fields on skin ulcers of venous origin in humans: a double blind study. J. Orthop. Res. 8:276–282.
  • Itoh, M., Montemayor, J. S. Jr., , et al. (1991). Accelerated wound healing of pressure ulcers by pulsed high peak power electromagnetic energy (Diapulse). Decubitus 4:24–25, 29–34.
  • Kotnik, T., Miklavcic, D. (2006). Theoretical analysis of voltage inducement on organic molecules. In: Kostarakis, P., ed. Proceedings of Forth International Workshop Biological effects of electromagnetic fields. Crete, 16–20 October, pp. 217–226.
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75.
  • Lee, R. C., Canaday, D. J., Doong, H. (1993). A review of the biophysical basis for the clinical application of electric fields in soft-tissue repair. J. Burn. Care. Rehabil. 14: 319–335.
  • Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In: Chiabrera, A., Nicolini, C., Schwan, H. P., eds. Interactions Between in Interactions Between Electromagnetic Fields and Cells. New York: Plenum Press, pp. 281–396.
  • Liboff, A. R. (2004). Signal shapes in electromagnetic therapies: A primer. In: Rosch, P., Markov, M., eds. Bioelectromag. Med.. New York: Marcel Dekker, pp. 17–37.
  • Liboff, A. R., Cherng, S., , et al. (2003). Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 mT magnetostatic fields. Bioelectromagnetics 24:32–38.
  • Liboff, A. F., Fozek, R. J., , et al. (1987). Ca2+-45 cyclotron resonance in human lymphocytes. J. Bioelectricity 6:13–22.
  • Liburdy, R. P., Yost, M. G. (1993). Tme-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. In: Blank, M., ed. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press, pp. 331–334.
  • Markov, M. S. (2002). How to go to magnetic field therapy? In: Kostarakis, P., ed. Proceedings of Second International Workshop of Biological effects of Electromagnetic fields. Rhodes, Greece, 7–11 October, pp. 5–15.
  • Markov, M. S. (2004a). Magnetic and electromagnetic field therapy: basic principles of application for pain relief. In: Rosch, P. J., Markov, M. S., eds. Bioelectromag. Med.. New York: Marcel Dekker, pp. 251–264.
  • Markov, M. S. (2004b). Myosin light chain phosphorylation modification depending on magnetic fields I. Theoretical. Electromag. Biol. Med. 23:55–74.
  • Markov, M. S. (2004c). Myosin phosphorylation – a plausible tool for studying biological windows. Ross Adey Memorial Lecture. In: Kostarakis, P., ed. Proceedings of Third International Workshop on Biological Effects of EMF. Kos, Greece, October 4–8, pp. 1–9.
  • Markov, M. S. (2004d). Myosin light chain phosphorylation modification depending on magnetic fields II. Experimental. Electromag. Biol. Med. 23:124–140.
  • Markov, M. S. (2005). Biological windows: A tribute to W. Ross Adey. Environmentalist 25(2/3):67–74.
  • Markov, M. S., Hazlewood, C. F., Ericsson, A. D. (2004). Systemic effect – a plausible explanation of the benefit of magnetic field therapy: a hypothesis. In: Kostarakis, P., ed. Proceedings of 3rd International Workshop on Biological Effects of EMF. Kos, Greece, October 4–8, pp. 673–682.
  • Markov, M. S., Muehsam, D. J., Pilla, A. A. (1994). Modulation of cell-free myosin phosphorylation with pulsed radio frequency electromagnetic fields. In Allen, M. J., Cleary, S. F., Sowers, A. E., eds. Charge and Field Effects in Biosystems 4. New Jersey: World Scientific, pp. 274–288.
  • Markov, M. S., Nindl, G., , et al. (2006). Interactions between electromagnetic fields and immune system: possible mechanisms for pain control. In: Ayrapetyan, S., Markov, M., eds. Bioelectromagnetics: Current Concepts. NATO Advanced Research Workshops Series. Springer, pp. 213–226.
  • Markov, M. S., Pilla, A. A. (1993). Ambient range sinusoidal and DC magnetic fields affect myosin phosphorylation in a cell-free preparation. In: Blank, M., ed. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press, pp. 323–327.
  • Markov, M. S., Pilla, A. A. (1994a). Static magnetic field modulation of myosin phosphorylation: Calcium dependence in two enzyme preparations. Bioelectrochem. Bioenerg. 35:57–61.
  • Markov, M. S., Pilla, A. A. (1994b). Modulation of cell-free myosin light chain phosphorylation with weak low frequency and static magnetic fields. In: Frey, A., ed. On the Nature of Electromagnetic Field Interactions with Biological Systems. Austin: R.G. Landes Co., pp. 127–141.
  • Markov, M. S., Ryaby, J. T., , et al. (1992). Extremely weak AC and DC magnetic field significantly affect myosin phosphorylation. In: Allen, M. J., Cleary, S. F., Sowers, A. E., Shillady, D. D., eds. Charge and Field Effects in Biosystems-3. Boston: Birkhauser, pp. 225–230.
  • Markov, M. S., Todorov, N. G. (1984). Electromagnetic field stimulation of some physiological processes. Studia Biophysica 99:151–156.
  • Markov, M. S., Todorov, S. I., Ratcheva, M. R. (1975). Biomagnetic effects of the constant magnetic field action on water and physiological activity. In: Jensen, K., Vassileva, Yu., eds. Physical Bases of Biological Information Transfer. New York: Plenum Press, pp. 441–445.
  • Markov, M. S., Wang, S., Pilla, A. A. (1993). Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation. Bioelectrochem. Bioenerg. 30:119–125.
  • Muehsam, D. J., Pilla, A. A. (1994). Weak magnetic field modulation of ion dynamics in a potential well: mechanistic and thermal noise considerations. Bioelectrochem. Bioenerg. 35:71–79.
  • Muehsam, D. S., Pilla, A. A. (1996). Lorentz approach to static magnetic field effects on bound ion dynamics and binding kinetics: thermal noise considerations. Bioelectromagnetics 17:89–99.
  • Nindl, G., Johnson, M. T., , et al. (2002). Therapeutic electromagne-tic field effects on normal and activated Jurkat cells. International Workshop of Biologi-cal Effects of Electromagnetic Fields. Rhodes, Greece, 7–11 October, pp. 167–173.
  • Ojingwa, J. C., Isseroff, R. R. (2003). Electrical stimulation of wound healing. J. Invest. Derm. 121:1–12.
  • Pennington, G. M., Danley, D. L., , et al. (1993). Pulsed, non thermal, high frequency electromagnetic energy (Diapulse) in the treatment of grade I and grade II ankle sprains. Military Med. 158:101–104.
  • Pilla, A. A. (1972). Electrochemical Information and Energy Transfer In Vivo. Proc. 7th IECEC. Washington, D.C.: American Chemical Society, pp. 761–764.
  • Pilla, A. A. (1974). Electrochemical information transfer at living cell membranes. Ann. NY Acad. Sci. 238:149–170.
  • Pilla, A. A. (2006). Mechanisms and therapeutic applications of time-varying and static magnetic fields. In: Barnes, F., Greenebaum, B., eds. Handbook of Biological Effects of Electromagnetic Fields. 3rd ed. Boca Raton, FL: CRC Press.
  • Pilla, A. A., Martin, D. E., , et al. (1996). Effect of pulsed radiofrequency therapy on edema from grades I and II ankle sprains: a placebo controlled, randomized, multi-site, double-blind clinical study. J. Athl. Train. S31:53.
  • Pilla, A. A., Muehsam, D. J., Markov, M. S. (1997). A dynamical systems/Larmor precession model for weak magnetic field bioeffects: Ion-binding and orientation of bound water molecules. Bioelectrochem. Bioenerg. 43:239–249.
  • Rosch, P., Markov, M. (2004). Bioelectromagnetic Medicine. New York: Marcel Dekker.
  • Rushton, D. N. (2002). Electrical stimulation in the treatment of pain. Disability Rehab. 24:407–415.
  • Ryaby, J. T. (1998). Clinical effects of electromagnetic and electric fields on fracture healing. Clin. Orthop. 355(suppl):205–215.
  • Seaborne, D., Quirion-DeGirardi, C., Rousseau, M. (1996). The treatment of pressure sores using pulsed electromagnetic energy (PEME). Physiotherapy Canada 48:131–137.
  • Shuvalova, L. A., Ostrovskaya, M. V., , et al. (1991). Weak magnetic field influence of the speed of calmodulin dependent phosphorylation of myosin in solution. Dokladi Acad. Nauk USSR 217:227.
  • Sluka, K. A., Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J. Pain 4:109–121.
  • Stiller, M. J., Pak, G. H., , et al. (1992). A portable pulsed electromagnetic field (PEMF) device to enhance healing of recalcitrant venous ulcers: a double-blind, placebo- controlled clinical trial. Br. J. Dermatol. 127:147–154.
  • Todorov, N. (1982). Magnetotherapy. Sofia: Meditzina i Physcultura Publishing House.
  • Vodovnik, L., Karba, R. (1992). Treatment of chronic wounds by means of electric and electromagnetic fields. Med. Biol. Eng. Comput. 30:257–266.
  • Williams, C. D., Markov, M. S., , et al. (2001). Therapeutic electro-magnetic field effects on angiogenesis and tumor growth. Anticancer Res. 21:3887–3892.
  • Wysocki, A. B. (1996). Wound fluids and the pathogenesis of chronic wounds. J. Wound Ostomy Care Nurs. 23:283–290.
  • Zhadin, M. N. (1998). Combined action of static and alternating magnetic fields on ion motion in a macromolecule: Theoretical aspects. Bioelectromagnetics 19:279–292.
  • Zhadin, M. N., Fesenko, E. E. (1990). Ionic cyclotron resonance in biomolecules. Biomed. Sci. 1:245–250.
  • Zizic, T., Hoffman, P., , et al. (1995). The treatment of osteoarthritis of the knee with pulsed electrical stimulation. J. Rheumatol. 22:1757–1761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.