82
Views
8
CrossRef citations to date
0
Altmetric
Original

Low-Energy Electromagnetic Fields Promote Proliferation of Vascular Smooth Muscle Cells

, , , , , & show all
Pages 41-53 | Published online: 07 Jul 2009

References

  • Acarregui M. J., Penisten S. T., et al. Vascular endothelial growth faxtor gene expression in human fetal lung in vitro. Amer. J. Respir. Cell. Mol. Biol. 1999; 20: 14–23
  • Aldinuccini C., Garcia J. B., et al. The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics 2003; 24: 109–117
  • Ameia Yen-Patton G. P., Patton W. F., et al. Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J. Cell. Physiol. 1988; 134: 37–46
  • Basset C. A. L., Pawluk R. J., Pilla A. A. Augmentation of bone repair by inductively coupled electromagnetic fields. Science 1974; 184: 575–577
  • Chao E. Y. S., Inoue N. Biopysical stimulation of bone fracture repair, regeneration and remodelling. Eur. Cell. Mater. 2003; 6: 72–85
  • Cheng K., Zou C. Electromagnetic field effect on separation of nucleotide sequences and unwinding of a double helix during DNA replication. Med. Hypotheses 2006; 66: 148–153
  • Cleary S. F. Biophysical aspects of electromagnetic field effects on mammalian cells. On the Nature of Electromagnetic Field: Interactions with Biological Systems, A. H. Frey. Austin, RG Landes Company 1994; 29–42
  • Davis S., Aldrich T. H., et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–1169
  • Dertinger H., Sontag W. Electromagnetic fields: mode of action. Biologic Effects of Light, M. F. Holick, E. G. Jung. Boston/London/Dordrecht, Kluwer Academic Publishers 1998; 281–286
  • Diniz P., Kenji S., et al. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 2002; 23: 398–405
  • Funk R. H., Monsees T. K. Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissu. Organs 2006; 182: 59–78
  • Goodman E. M., Greenebaum B., Marron M. T. Effects of electromagnetic fields on molecules and cells. Int. Rev. Cytol. 1995; 158: 279–338
  • Goodman R., Bassett C. A. L., Henderson A. S. Pulsing electromagnetic fields induce cellular transcription. Science 1983; 220: 1283
  • Goodman R., Henderson A. S. Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis. Proc. Natl. Acad. Sci. USA 1988; 85: 3928–3932
  • Gottwald E., Sontag W., et al. Expression of HSP72 after ELF-EMF exposure in three cell lines. Bioelectromagnetics 2007; 28: 509–518
  • Huang L., Dong L., et al. Effects of sinusoidal magnetic field observed on cell proliferation, ion concentration, osmolarity in two human cancer cell lines. Electromagn. Biol. Med. 2006; 25: 113–126
  • Kanno S., Oda N., et al. Establishment of a simple and practical procedure applicable to therapeutic angiogenesis. Circulation 1999; 99: 2682–2687
  • Knedlitschek G., Gottwald E., Weibezahn K. F. Effects of interferential current in cellular systems. Biologic Effects of Light, M. F. Holick, E. G. Jung. Boston/London/Dordrecht, Kluwer Academic Publishers 1998; 303–311
  • Knedlitschek G., Noszvai-Nagy M., et al. Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities. Radiat. Environ. Biophys. 1994; 33: 141–147
  • Li J. K., Lin J. C., et al. Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med. Biol. 2006; 32: 769–775
  • Low, J., Reed, A. Electrotherapy Explained—Principles and Practice. Philadelphia, Butterworth-Heinemann. Ch.3. 2003
  • Luben R. A. Membrane signal tranduction as a site of electromagnetic field actions in bone and other tissues. On the Nature of Electromagnetic Field: Interactions with Biological Systems, A. H. Frey. Austin, RG Landes Company 1994; 83–98
  • Maisonpierre P. C., Suri C., et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60
  • Markov M. S. Magnetic field therapy: a review. Electromagn. Biol. Med. 2007; 26: 1–23
  • Philipp A., Wolf G. K., et al. Interferential current is effective in palmar psoriaris: an open prospective trial. Eur. J. Dermatol. 2000; 10: 195–198
  • Popovici R. M., Irwin J. C., et al. Hypoxia and cAMP stimulate vascular endothelial growth factor (VEGF) in human endometrial regeneration. J. Clin. Endocrinol. Metab. 1999; 84: 2245–2248
  • Ryaby J. T. Clinical effects of electromagnetic and electric fields on fracture healing. Clin. Orthop. 1998; 355: 205–215
  • Schimmelpfeng J., Dertinger H. Action of 50 Hz magnetic fields on cAMP content in SV40-3T3 cells: dependence on flux density extracellular calcium. Bioelectrochem. Bioenerg. 1997a; 43: 51–54, a
  • Schimmelpfeng J., Dertinger H. Action of a 50 Hz magnetic field on proliferation of cells in culture. Bioelectromagnetics 1997b; 18: 177–183, b
  • Schimmelpfeng J., Stein J. C., Dertinger H. Action of 50 Hz magnetic field upon cyclic AMP and intercellular communication in monolayers and spheroids of mammalian cells. Bioelectromagnetics 1995; 16: 381–386
  • Sindermann J. R., Babij P., et al. Smooth muscle-specific expression of SV40 large TAg induces SMC proliferation causing adaptive arterial remodeling. Amer. J. Physiol. Heart Circ. Physiol. 2002; 283: H2714–H2724
  • Sindermann J. R., March K. L. Balancing luminal size and smooth muscle proliferation—a key control point in atherosclerosis and restenosis. EXS 2005; 94: 193–205
  • Sontag W. Release of mediators by DMSO-differentiated HL-60 cells exposed to electric interferential current and the requirement of biochemical prestimulation. Int. J. Radiat. Biol. 2001; 77/6: 723–734
  • Sontag W., Dertinger H. Response of cytosolic calcium, cyclic AMP and cyclic GMP in DMSO-differentiated HL-60 cells to modulated low frequency currents. Bioelectromagnetics 1998; 19: 452–458
  • Tait C. R., Jones P. F. Angiopoietins in tumours: the angiogenic switch. J. Pathol. 2004; 204: 1–10
  • Tepper O. M., Callaghan M. J., et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB 2004; 18: 1231–1233
  • Wolf F. I., Torsello A., et al. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim. Biophys. Acta 2005; 1743: 120–129
  • Yancopoulos G. D., Davis S., et al. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248
  • Zwirska-Korczala K., Jochem J., et al. Effect of extremely low frequency of electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes—an in vitro study. J. Physiol. Pharmacol. 2005; 56(Suppl. 6)101–108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.