522
Views
56
CrossRef citations to date
0
Altmetric
Review

Radiofrequency and Extremely Low-Frequency Electromagnetic Field Effects on the Blood-Brain Barrier

, , , , , & show all
Pages 103-126 | Published online: 07 Jul 2009

References

  • Adzamli I. K., Jolesz E. A., Blau M. An assessment of BBB integrity under MRI conditions: brain uptake of radiolabelled Gd-DTPA and In-DTPA-IgG. J. Nucl. Med. 1989; 30: 839–840
  • Albert E. N., Kerns J. M. Reversible microwave effects on the BBB. Brain Res. 1981; 230: 153–164
  • Alberts B., Johnson A., . Cell junctions, cell adhesion and the extracellular matrix. Molecular Biology of the Cell, S. Gibbs, et al. Garland Publishing, New York 2002, ch. 19
  • Bach Andersen J., Mogensen P., Pedersen G. F. Possible exposures from future mobile communication systems. Review of Radio Science 1999–2002. Wiley-Interscience, New York 2002; 935–941
  • Bauréus-Koch C. L. M., Sommarin M., et al. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 2003; 24: 395–402
  • Blackman C. F., Benane S. G., et al. A role of the magnetic field in the radiation induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 1985; 6: 327–337
  • Blackman C. F., Kinney L., et al. Multiple power-density windows and their possible origin. Bioelectromagnetics 1989; 10: 115–128
  • Blanchard J. P., Blackman C. F. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 1994; 15: 217–238
  • Chan P. H., Fishman R. A., et al. Induction of brain edema following intracerebral injection of arachidonic acid. Ann. Neurol. 1983; 13: 625–632
  • Cosquer B., Vasconcelos A. P., et al. BBB and electromagnetic fields: effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45 GHz microwaves in rats. Behav. Brain Res. 2005; 161: 229–237
  • Daneman R., Barres B. The BBB—lessons from moody flies. Cell 2005; 123: 9–12
  • Davson H., Segal M. B. Breakdown of the barriers and cerebral edema. Physiology if the CSF and the BBBs, H. Davson. CRC Press, Inc, Boca Raton, FL 1996; 538–539
  • Eberhardt, J., Persson, B. R. R., et al. Blood-Brain Barrier permeability and nerve cell damage in the rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Submitted manuscript.
  • Eimerl S., Schramm M. Acute glutamate toxicity and its potentiation by serum albumin are determined by the Ca2+ concentration. Neurosci. Lett. 1991; 130: 125–127
  • Finnie J. W., Blumbergs P. C., et al. Effect of global system for mobile communication (GSM)-like radiofrequency fields on vascular permeability in mouse brain. Pathology 2001; 33: 338–340
  • Finnie J. W., Blumbergs P. C., et al. Effect of long-term mobile communication microwave exposure on vascular permeability in mouse brain. Pathology 2002; 34: 244–347
  • Finnie J. W., Blumbergs P. C. Mobile telephones and brain vascular leakage. Pathology 2004; 36: 96–97
  • Frank R. N., Dutta S., Mancini M. A. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest. Ophthalmol. Vis. Sci. 1987; 28: 1086–1091
  • Franke H., Feld S. R., et al. Effects of universal mobile telecommunications system (UMTS) electromagnetic fields on the BBB in vitro. Radiat. Res. 2005a; 164: 258–269
  • Franke H., Ringelstein E. B., Stögbauer F. Electromagnetic fields (GSM1800) do not alter BBB permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics 2005b; 26: 529–535
  • Fredriksson K., Kalimo H., et al. Nerve cell injury in the brain of stroke-prone spontaneously hypertensive rats. Acta Neuropathol. (Berl) 1988; 76: 227–237
  • Frey A. H. Headaches from cellular phones: are they real and what are the implications?. Environ. Health Perspect. 1998; 106: 101–103
  • Frey A. H., Feld S. R., Frey B. Neural function and behaviour: defining the relationship. Ann. NY Acad. Sci. 1975; 247: 433–439
  • Friedman J., Kraus S., et al. Mechanism of a short-term ERK activation by electromagnetic fields at mobile phone frequency. Biochem. J. 2007; 405: 559–568
  • Fritze K., Sommer C. Effect of global system for mobile communication (GSM) microwave exposure on BBB permeability in rat. Acta Neuropathol. 1997; 94: 465–470
  • Garber H. J., Oldendorf W. H., et al. MRI gradient fields increase brain mannitol space. Magn. Reson. Imaging 1989; 7: 605–610
  • Ghersi-Egea J. F., Minn A., Siest G. A new aspect of the protective functions of the BBB: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci. 1988; 42: 2515–2523
  • Goldman H., Lin J. C., et al. Cerebrovascular permeability to 86Rb in the rat after exposure to pulsed microwaves. Bioelectromagnetics 1984; 5: 323–330
  • Gruenau S. P., Oscar K. J., et al. Absence of microwave effect on blood-brain-barrier permeability to [C-14]-labeled sucrose in the conscious rat. Exp. Neurol. 1982; 75: 299–307
  • Hassel B., Iversen E. G., Fonnum F. Neurotoxicity of albumin in vivo. Neurosci. Lett. 1994; 167: 29–32
  • Hyland G. Physics and biology of mobile telephony. Lancet 2000; 356: 1833–1836
  • ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 1998; 74: 494–522
  • Kuribayashi M., Wang J., et al. Lack of effects of 1439 MHz electromagnetic near field exposure on the BBB in immature and young rats. Bioelectromagnetics 2005; 26: 578–588
  • Leszczynski D., Joenväärä S., et al. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanisms for cancer- and BBB-related effects. Differentiation 2002; 70: 120–129
  • Lin J. C., Lin M. F. Studies on microwave and BBB interaction. Bioelectromagnetics 1980; 1: 313–323
  • Lin J. C., Lin M. F. Microwave hyperthermia-induced BBB alterations. Radiat. Res. 1982; 89: 77–87
  • Martens L., van Hese J. Electromagnetic field calculations used for exposure experiments on small animals in TEM-cells. Bioelectrochem. Bioenerget. 1993; 30: 73–81
  • Merritt J. H., Chamness A. F., Allen S. J. Studies on BBB permeability. Radial Environ. Biophys. 1978; 15: 367–377
  • Mihàly A., Bozòky B. Immunohistochemical localization of serum proteins in the hippocampus of human subjects with partial and generalized epilepsy and epileptiform convulsions. Acta Neuropathol. 1984a; 127: 251–267
  • Mihàly A., Bozòky B. Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized and epileptiform convulsions. Acta Neuropathol. 1984b; 65: 471–477
  • Moriyama E., Salcman M., Broadwell R. D. BBB alteration after microwave-induced hyperthermia is purely a thermal effect: I. Temperature and power measurements. Surg. Neurol. 1991; 35: 177–182
  • Nakagawa M., Matsumoto K., et al. Acute effects of interstitial hyperthermia on normal monkey brain–magnetic resonance imaging appearance and effects on BBB. Neurol. Med. Chir. (Tokyo) 1994; 34: 668–675
  • Neubauer C., Phelan A. M., et al. Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex. Bioelectromagnetics 1990; 11: 261–268
  • Nittby H., Grafström G., et al. Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 2008a; 29: 219–232
  • Nittby, H., Widegren, B., et al. (2008b). Exposure to Radiation from Global System for Mobile Communications at 1800 MHz Significantly Changes Gene Expression in Rat Hippocampus and Cortex. Environmentalist published online.
  • Oldendorf W. H. Permeability of the BBB. The Nervous System, D. Tower. Raven Press, New York 1975; 229–289
  • Oldendorf W. H., Cornford M. E., Brown W. J. The large apparent work capability of the BBB: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1977; 1: 409–417
  • Oscar K. J., Gruenau S. P., et al. Local cerebral blood flow after microwave exposure. Brain Res. 1981; 204: 220–225
  • Oscar K. J., Hawkins T. D. Microwave alteration of the BBB system of rats. Brain Res. 1977; 126: 281–293
  • Öztas B., Kalkan T., Tuncel H. Influence of 50 Hz frequency sinusoidal magnetic field on the BBB permeability of diabetic rats. Bioelectromagnetics 2004; 25: 400–402
  • Parathath S. R., Parathath S., Tsirka S. E. Nitric oxide mediates neurodegeneration and breakdown of the BBB in tPA-dependent excitotoxic injury in mice. J. Cell. Sci. 2006; 119: 239–249
  • Persson B. R. R., Salford L. G., et al. EMF interaction with calcium-45 transport in biomembranes. Nanobiology 1992; 3: 483–490
  • Persson B. R. R., Salford L. G., Brun A. BBB permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Networks 1997; 3: 455–461
  • Prato F. S., Frappier R. H., et al. Magnetic resonance imaging increases the BBB permeability to 153-gadolinium diethylenetriaminepentaacetic acid in rats. Brain Res. 1990; 523: 301–304
  • Prato F. S., Wills J. M., et al. BBB permeability in rats is altered by exposure to magnetic fields associated with magnetic resonance imaging at 1.5 T. Microsc. Res. Technol. 1994; 27: 528–534
  • Preston E., Buffler K., Haas N. Does magnetic resonance imaging compromise integrity of the BBB?. Neurosci. Lett. 1989; 101: 46–50
  • Preston E., Vavasour R. J., Assenheim H. M. Permeability of the BBB to mannitol in the rat following 2450 MHz microwave irradiation. Brain Res. 1979; 174: 109–117
  • Quock R. M., Fujimoto J. M., et al. Microwave facilitation of methylatropine antagonism of central cholinomimetic drug effects. Radiat. Res. 1986; 105: 328–340
  • Quock R. M., Kouchich F. J., et al. Microwave facilitation of domperidone antagonism of apomophine-induced stereotypic climbing in mice. Bioelectromagnetics 1987; 8: 45–55
  • Rapoport S. I. BBB in Physiology and Medicine. Raven Press, New York 1976
  • Romano-Spica V., Mucci N. Biological effects of EMF exposure on Ets genes. Radiat. Biol. Radioecol. 2003, 43: 528–530
  • Salahuddin T. S., Kalimo H., et al. Observations on exsudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating longlasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathol. (Berl) 1988; 76: 1–10
  • Salford L. G., Brun A., . Electromagnetic field-induced permeability of the BBB shown by immunohistochemical methods. Interaction Mechanism of Low-Level Electromagnetic Fields in Living Systems, B. Nordén, C. Ramel, et al. Oxford University Press, Oxford 1992; 251–258
  • Salford L. G., Brun A., et al. Permeability of the blood-brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Bioelectrochem. Bioenerg. 1993; 30: 293–301
  • Salford L. G., Brun A., et al. Permeability of the blood-brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Microsc Res. Tech. 1994; 27: 535–542
  • Salford L. G., Brun A., Persson B. R. R. Brain tumour development in rats exposed to electromagnetic fields used in wireless cellular communication. Wireless Networks 1997; 3: 463–469
  • Salford L. G., Brun A. E., et al. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 2003; 111: 881–883
  • Salford L. G., Nittby H., et al. Non-thermal effects of EMF upon the mammalian brain: the Lund experience. Environmentalist 2007; 27: 493–500
  • Salford L. G., Persson B., . Téléphonie Mobile et Barrière Sang-Cerveau. Téléphonie Mobile—Effects Potentiels sur la Santé des ondes Electromagnétiques de haute Fréquence, M. Pietteur, et al, Emburg (Belgium) 2001; 141–152
  • Schirmacher A., Winters S., et al. Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the BBB in vitro. Bioelectromagnetics 2000; 21: 338–345
  • Shivers R. R., Kavaliers M., et al. Magnetic resonance imaging temporarily alters BBB permeability in the rat. Neurosci. Lett. 1987; 76: 25–31
  • Sokrab T. E. O., Johansson B. B. A transient hypertensive opening of the BBB can lead to brain damage. Acta Neuropathol. 1988; 75: 557–565
  • Stagg R. B., Havel L. H., III, et al. Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA. Radiat. Res. 2001; 155: 584–592
  • Thomas W. E. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res. Brain Res. Rev. 1999; 31: 42–57
  • Tsurita G., Nagawa H., et al. Biological and morphological effects on the brain after exposure of rats to a 1439 MHz TDMA field. Bioelectromagnetics 2000; 21: 364–371
  • Töre F., Dulou P. E., et al. Two-hour exposure to 2-W/kg, 900-MHZ GSM microwaves induces plasma protein extravasation in rat brain and dura matter. Proc. 5th Int. Congr. EBEA. Helsinki, Finland 2001; 43–45
  • Töre, F., Dulou, P. E., et al. (2002). Effect of 2 hour GSM-900 microwave exposures at 2.0, 0.5 and 0.12 W/kg on plasma protein extravasation in rat brain and dura mater. Proc. 24th Annu. Meeting of the BEMS, pp. 61–62.
  • Ushiyama, A., Masuda, H., et al. (2007). Biological effect on blood cerebrospinal fluid barrier due to radio frequency electromagnetic fileds exposure of the rat brain in vivo. Environmentalist 27:489–492.
  • Van Hese J., Martens L., et al. Simulation of the effect of inhomogenities in TEM transmission cells using the FDTD-method. IEEE Trans. Electromagn. Comp. 1992; 34: 292–298
  • Ward T. R., Ali J. S. BBB permeation in the rat during exposure to low-power 1.7-GHz microwave radiation. Bioelectromagnetics 1985; 6: 131–143
  • Ward T. R., Elder J. A., et al. Measurement of BBB permeation in rats during exposure to 2450-MHz microwaves. Bioelectromagnetics 1982; 3: 371–383
  • Williams W. M., del Cerro M., del Michaelson S. M. Effects of 2450 MHz microwave energy on the BBB to hydrophilic molecules. B. Effects on the permeability to HRP. Brain Res. Rev. 1984b; 7: 171–181
  • Williams W. M., Hoss W., et al. Effects of 2450 MHz microwave energy on the BBB to hydrophilic molecules. A. Effect on the permeability to sodium fluorescein. Brain Res. Rev. 1984a; 7: 165–170
  • Williams W. M., Lu S. T., et al. Effect of 2450 MHz microwave energy on the BBB to hydrophilic molecules. D. Brain temperature and BBB permeability to hydrophilic tracers. Brain Res. 1984d; 319: 191–212
  • Williams W. M., Platner J., del Michaelson S. M. Effects of 2450 MHz microwave energy on the BBB to hydrophilic molecules. C. Effects on the permeability to [14C]sucrose. Brain Res. Rev. 1984c; 7: 183–190

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.