138
Views
23
CrossRef citations to date
0
Altmetric
Original

Influence of 50 Hz Magnetic Field on Sex Hormones and Body, Uterine, and Ovarian Weights of Adult Female Rats

Pages 155-163 | Published online: 07 Jul 2009

References

  • Al-Akhras M., Darmani H., Elbetieha A. Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rats. Bioelectromagnetics 2006; 27: 127–131
  • Al-Akhras M., Elbetieha A., et al. Effects of extremely low frequency magnetic field on fertility of adult male and female rats. Bioelectromagnetics 2001; 22: 340–344
  • Bakos J., Nagy N., et al. Sinusoidal 50 Hz, 500 micro T magnetic field has no acute effect on urinary 6-sulphatoxymelatonin in Wistar rats. Bioelectromagnetics 1995; 16: 377–380
  • Bakos J., Nagy N., et al. Urinary 6-sulphatoxymelatonin excretion is increased in rats after 24 hours of exposure to vertical 50 Hz, 100 micro T magnetic field. Bioelectromagnetics 1997; 18: 190–192
  • Bakos J., Nagy N., et al. One week of exposure to 50 Hz, vertical magnetic field does not reduce urinary 6-sulphatoxymelatonin excretion of male wistar rats. Bioelectromagnetics 2002; 23: 245–248
  • Beniashvili D., Bilanishvili V. G., Menabde M. Z. Low-frequency electromagnetic radiation enhances the induction of rat mammary tumors by nitrosomethyl urea. Cancer Lett. 1991; 61: 75–79
  • Burchard J., Nguyen D., Block E. Progesterone concentrations during estrous cycle of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 1998; 19: 438–443
  • Burchard J., Nguyen D., et al. Lack of effect of 10 kV/m 60 Hz electric field exposure on pregnant dairy heifer hormones. Bioelectromagnetics 2004; 25: 308–312
  • Cecconi S., Gualtieri G., et al. Evaluation of the effects of extremely low frequency electromagnetic fields on manmalian follicle development. Human Reprod. 2000; 15: 2319–2325
  • Csapo A., Pulkkinen M., Wiest W. Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am. J. Obstet. Gynecol. 1973; 115: 759–765
  • Davis S., Kaune W., et al. Residential magnetic fields, light-at-night, and nocturnal urinary 6-sulfatoxymelatonin concentration in women. Am. J. Epidemiol. 2001; 154: 591–600
  • Davis S., Mirick D., et al. Effects of 60-Hz magnetic field exposure on nocturnal 6-sulfatoxymelatonin, estrogens, luteinizing hormone, and follicle-stimulating hormone in healthy reproductive-age women: results of a crossover trial. Ann. Epidemiol. 2006; 16: 622–631
  • De Bruyn L., de Jagar L., Kuyl J. The influence of long-term exposure of mice to randomly varied power frequency magnetic fields on their nocturnal melatonin secretion patterns. Environ. Res. 2001; 85: 115–121
  • Elbetieha A., Al-Akhras M., Darmani H. Long-term exposure of male & female mice to 50 Hz magnetic field: effect on fertility. Bioelectromagnetics 2002; 23: 168–172
  • Finn C., Martin L. The control of implantation. J. Reprod. Fertil. 1974; 39: 195–206
  • Graham C., Cook M., et al. Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics 1996; 17: 263–273
  • Griefahn B., Künemund C., et al. Experiments on the effects of a continuous 167 Hz magnetic field on melatonin secretion, core body temperature, and heart rates in humans. Bioelectromagnetics 2001; 22: 581–588
  • Heikkinen P., Kumlin T., et al. Chronic exposure to 50-Hz magnetic fields or 900-MHz electromagnetic fields does not alter nocturnal 6-sulphatoxymelatonin sulfate secretion in CBA/S mice. Electro-Magnetobiol. 1999; 18: 33–42
  • Hjollund N., Bonde J., et al. Semen quality and sex hormones with reference to metal welding. Reprod. Toxicol. 1998; 12: 91–95
  • John T., Liu G., Brown G. 60 Hz magnetic field exposure and urinary 6-sulphatoxymelatonin levels in the rat. Bioelectromagnetics 1998; 19: 172–180
  • Juutilainen J., Kumlin T. Occupational magnetic field exposure and melatonin: Interaction with light-at-night. Bioelectromagnetics 2006; 27: 423–426
  • Juutilainen J., Läärä E., Saali K. Relationship between field strength and abnormal development in chick embryos exposed to 50-Hz magnetic fields. Int. J. Radiat. Biol. 1987; 52: 787–793
  • Juutilainen J., Matilainen P., et al. Early pregnancy loss and exposure to 50-Hz magnetic fields. Bioelectromagnetics 1993; 14: 229–236
  • Juutilainen J., Stevens R., et al. Nocturnal 6-hydroxymelatonin sulfate excretion in female workers exposed to magnetic field. J. Pineal Res. 2000; 28: 97–104
  • Kato M., Honma K., et al. Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics 1993; 14: 97–106
  • Kato M., Honma K., et al. Horizantal or vertical 50-Hz, 1-microT magnetic fields have on effect on pineal gland or plasma melatonin concentrations of albino rats. Neurosci. Lett. 1994; 168: 205–208
  • Kumlin T., Heikkinen P., et al. Exposure to a 50-Hz magnetic field induces a circadian rhythm in 6-hydroxymelatonin sulfate excretion in mice. J. Radiat. Res. 2005; 46: 313–318
  • Kurokawa Y., Nitta H., et al. Acute exposure to 50 Hz magnetic fields with harmonics and transient components: lack of effects on nighttime hormonal secretion in men. Bioelectromagnetics 2003; 24: 12–20
  • Mevissen M., Lerchl A., et al. Exposure of DMBA-treated female rats in a 50-Hz, 50 micro Tesla magnetic fields: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation. Carcinogenesis 1996; 17: 903–910
  • Pepe G., Rothchild I. Serum progesterone levels in ovariectomized rats injected with progesterone and estrone: relation to pregnancy maintenance and growth of decidual tissue. Endocrinology 1973; 93: 1193–1199
  • Pepe G., Albrecht E. Action of placental and fetal adrenal steroid hormones in primate pregnancy. Endocrinol. Rev. 1995; 16: 608–648
  • Reiter R. Static and extremely low frequency electromagnetic field exposure reported effects on the circadian production of melatonin (review). J. Cell Biochem. 1993; 51: 394–405
  • Rodriguez M., Petitclerc D., et al. Effects of electric and magnetic fields (60 Hz) on production, and levels of growth hormone and insulin-like growth factor 1 in lactating, pregnant cows subjected to short days. J. Dairy Sci. 2002; 85: 2843–2849
  • Sandyk R. Weak magnetic fields antagonize the effects of melatonin on blood glucose levels in Parkinson's disease. Int. J. Neurosci. 1993; 68: 85–91
  • Selmaoui B., Touitou Y. Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. Life Sci. 1995; 57: 1351–1358
  • Stevens R. Electric power use and breast cancer: a hypothesis. Amer. J. Epidemiol. 1987; 125: 556–561
  • Wilson B., Stevens R. G., Anderson L. E. Minireview: neuroendocrine mediated effects of electromagnetic-field exposure: possible role of the pineal gland. Life Sci. 1989; 45: 1319–1332
  • Yellon S. Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster. J. Pineal Res. 1994; 16: 136–144

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.