151
Views
24
CrossRef citations to date
0
Altmetric
Original

Effects of Extremely Low-Frequency-Pulsed Electromagnetic Field on Different-Derived Osteoblast-Like Cells

, &
Pages 298-311 | Published online: 07 Jul 2009

References

  • Bassett C. A. Pulsing electromagnetic fields: a new method to modify cell behavior in calcified and noncalcified tissues. Calcif. Tissue Int. 1982; 34: 1–8
  • Bassett C. A. Beneficial effects of electromagnetic fields. J. Cell. Biochem. 1993; 51: 387–393
  • Brighton C. T., Hozack W. J., et al. Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields. J. Orthop. Res. 1985; 3: 331–340
  • Brighton C. T., Tadduni G. T., Pollack S. R. Treatment of sciatic denervation disuse osteoporosis in the rat tibia with capacitively coupled electrical stimulation. Dose response and duty cycle. J. Bone Joint. Surg. Amer. 1985; 67(7)1022–1028
  • Buzza E. P., Shibli J. A., et al. Effects of electromagnetic field on bone healing around commercially pure titanium surface: histologic and mechanical study in rabbits. Implant Dent. 2003; 12(2)182–187
  • Buzza E. P., Shibli J. A., et al. Dynamic changes in traction forces with DC electric field in osteoblast-like cells. J. Cell Sci. 2004; 117(Pt 13)2721–2729
  • Chang W. H. S., Chen L. T., et al. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 2004; 25: 457–465
  • Cohly H. H., Abraham G. E., 3rd, et al. Effect of static electromagnetic fields on characteristics of MG-63 osteoblasts grown in culture. Biomed. Sci. Instrum. 2003; 39: 454–459
  • Curtze1 S., Dembo M., et al. Dynamic changes in traction forces with DC electric field in osteoblast-like cells. J. Cell Sci. 2004; 117(13)2721–2729
  • De Mattei M., Caruso A., et al. Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell line and human normal osteoblast cells in vitro. Bioelectromagnetics 1999; 20: 177–182
  • Diniz P., Shomura K., et al. Effects of pulsed electromagnetic fields (PEMF) stimulation on bone tissue-like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 2002; 23(5)398–405
  • Fitzsimmons R. J., Ryaby J. T., et al. Combined magnetic fields increased net calcium flux in bone cells. Calcif. Tissue Int. 1994; 55(5)376–380
  • Franceschi R. T., Lyer B. S. Relationship between the collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1. J. Bone Min. Res. 1992; 7: 235–246
  • Friedenberg Z. B., Brighton C. T. Bioelectric potentials in bone. J. Bone and Joint. Surg. 1966; 48(A)915–923
  • Fukada E., Yasuda I. On the piezoelectric effect of bone. J. Phys. Soc. Japan 1957; 12: 1158–1162
  • Grace K. L. R., Revell W. J., Brookes M. The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove. Orthopology 1998; 21: 297–302
  • Hartig M., Joos U., Wiesmann H. P. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increased bone extracellular matrix formation in vitro. Eur. Biophys. J. 2000; 29: 499–506
  • Ibiwoye M. O., Powell K. A., et al. Bone mass is preserved in a critical-sized osteotomy by low energy pulsed electromagnetic fields as quantitated by in vivo micro-computed tomography. J. Orthop. Res. 2004; 22(5)1086–1093
  • Kirschvink J. L. Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagetic experiments. Bioelectromagnetics 1992; 13(5)401–411
  • Kotani H., Kawaguchi H., et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J. Bone Miner. Res. 2002; 17(10)1814–1821
  • Lange S., Viergutz T., Simko M. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionzing radiation. Cell Proliferation 2004; 37: 337–349
  • Lee J. H., Mcleod K. J. Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics 2000; 21(2)129–136
  • Lohmann C. H., Schwartz Z., et al. Pulsed electromagnetic fields affect phenotype and connexin 43 protein eexpression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J. Orthop. Res. 2003; 21(2)326–334
  • Majeska R. J. Culture of osteoblastic cells. Principles of Bone Biology, J. P. Bilezikian, L. G. Raisz, G. A. Rodan. Academic Press, San Diego 1996; 1229–1237
  • Mcleod B. R., Liboff A. R. Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectramagnetics 1986; 7: 177–189
  • Mcleod K. J., Collazo L. Suppression of a differentiation response in MC3T3-E1 osteoblast-like cells by sustained low-level, 30 Hz magnetic-field exposure. Radiat. Res. 2000; 153(5Pt 2)706–714
  • Qiu L. H., Tang X. N., et al. Effect of static magnetic field on proliferation and cell cycle of osteoblast cell. Shang Hai Kou Qiang Yi Xue 2004; 13(5)469–470
  • Quarles L. D., Yohay D. A., et al. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J. Bone Min. Res. 1992; 7: 683–692
  • Saltzman C., Lightfoot A., Amendola A. PEMF as treatment for delayed healing of foot and ankle arthrodesis. Foot Ankle Int. 2004; 25(11)771–773
  • Schwartz J. L., House D. E., Mealing G. A. Exposure of frog hearts to CW or amplitude-modulated fields: selective efflux of calcium ions at 16 Hz. Bioelectromagnetics 1990; 11: 349–358
  • Smith S. D., McLeod B. R., et al. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics 1987; 8: 215–227
  • Sollazzo V., Traina G. C., et al. Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields. Bioelectromagnetics 1997; 18(8)541–547
  • Stein G. S., Lian J. B., et al. Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 1996; 76: 593–629
  • Takeuchi Y., Nakayama K., Matsumoto T. Differentiation and cell surface expression of transforming growth factor-β receptors are regulated by interactions with matrix collagen in murine osteoblastic cells. J. Biol. Chem. 1996; 271: 3938–3944
  • Takeuchi Y., Suzawa M., et al. Differentiation and transforming growth factor-β receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J. Biol. Chem. 1997; 272: 29309–29316
  • Tang Q., Chen G., Zhao N. M. Effects of ELF electric fields on proliferation of mouse osteoblast cells. Bioelectrochem. Bioenerg. 1998; 47: 349–353
  • Turk Z. Bone healing and biochemical blood parameters after arteficial osteotomy of rabbits femur treated by low-frequency magnetic field. Ien. Klin. Wochenschr. 2001; 113(Suppl 3)47–52
  • Wertheimer N., Savitz D. A., Leeper E. Childhood cancer in relation to indicators of magnetic fields from ground current sources. Bioelectromagnetics 1995; 16: 86–96
  • Yamaguchi D. T., Huang J., et al. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell proliferation. J. Cell. Physiol. 2002; 190: 180–188
  • Yamamoto Y., Ohsaki Y., et al. Effect of static magnetic fields on bone formation in rat osteoblast cultures. J. Dent. Res. 2003; 82(12)962–966

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.