51
Views
2
CrossRef citations to date
0
Altmetric
Original

Threshold of Pain in Chronic Magnetic Field- (50 Hz, 17.9 μT) Exposed Rats: Effect of Sucrose Ingestion

&
Pages 254-265 | Published online: 07 Jul 2009

References

  • Aimone L. D., Bauer C. A., Gebhart G. F. Brain stem relays mediating stimulation produced antinociception from the lateral hypothalamus in the rat. J. Neurosci. 1988; 8: 2652–2663
  • Anseloni V. C. Z., Weng H.-R., et al. Age-dependency of analgesia elicited by intraoral sucrose in acture and persistent pain models. Pain 2002; 97: 93–103
  • Betancur C., Omo G., Allera E. Magnetic field effects on stress-induced analgesia in mice: modulation of light. Neurosci. Lett. 1994; 182: 147–150
  • Blass E. M., Fitzgerald E., Kehoe P. Interactions between sucrose, pain and isolation distress. Pharmacol. Biochem. Behav. 1987; 26: 483–489
  • Bucher U. H., Moser T., et al. Sucrose reduces pain reaction to heel lancing in preterm infants: a placebo controlled, randomized and masked study. Paediatr. Res. 1995; 38: 332–336
  • Del Seppia C., Ghione S., et al. Exposure to oscillating magnetic fields influences sensitivity to electrical stimuli. I: Experiments on pigeons. Bioelectromagnetics 1995; 16: 290–294
  • Dum J., Gramsch C., Herz A. Activation of hypothalamic beta endorphin pools be reward induced by highly palatable food. Pharmacol. Biochem. Behav. 1983; 58: 443–447
  • Dutta R., Mookherjee K., Mathur R. Effect of VMH lesion on sucrose fed analgesia in formalin pain. Jpn. J. Physiol. 2001; 51: 63–69
  • Fan S.-F., Shen K.-F., Crain S. M. Opioids at low concentration decrease opening of k+ channels in sensory ganglion neurons. Brain Res. 1991; 558: 166–170
  • Finely J. C. W., Lindstrom P., Petrusz P. Immunocytochemical localization of β-endorphin containing neurons in the rat brain. Neuroendocrinology 1981; 33: 28–42
  • Gamaro G. D., Xavier M. H., et al. The effect of acute and repeated restraint stress on the nociceptive response in rats. Physiol. Behav. 1998; 64: 693–697
  • Geyer J., Ellsbury D., et al. An evidence-based multidiciplinary protocol for neonatal circumcision pain management. J. Obstet. Gynecol. Neonatal Nurs. 2002; 31(4)403–410
  • Hoffmeister F., Kroneberg G. Experimental studies in animals on the differentiation of analgesic activity. Methods in Drug Evaluation, P. Mantegazza, F. Piccinini. Elsevier-North-Holland, Amsterdam 1966; 270–277
  • Hung, L.-Y. M. (1995). Cellular mechanisms of excitatory and inhibitory actions of opioids. In: Tseng, L. F., ed. The Pharmacology of Opioid Peptides. Hardwood Academic Publishers, pp. 131–149.
  • Jorgensen W. A., Frome B. M., Wallach C. Electrochemical therapy of pelvic pain: effects of pulsed electromagnetic fields (PEMF) on tissue trauma. Eur. J. Surg. Suppl. 1994; 574: 83–86
  • Junkersdorf B., Bauer H., Gutzeit H. O. Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans. Bioelectromagnetics 2000; 21(2)100–106
  • Kavaliers M., Ossenkopp K.-P. Calcium channel involvement in magnetic field inhibition of morphine-induced analgesia. Nauyn-Schmiedberg's Arch. Pharmacol. 1987; 336: 308–315
  • Kavaliers M., Ossenkopp K.-P. Repeated naloxone treatments and exposure to weak 60 Hz magnetic fields have “analgesic” effects in snails. Brain Res. 1993; 620: 159–162
  • Keith D. A., White D. D., Walburn J. N. Sucrose as an analgesic agent for infants during immunization injections. Arch. Paediatr. Adolesc. Med. 1996; 150: 270–274
  • Kirschivink J. L. Uniform magnetic field and double wrapped coiled system. Bioelectromagnetics 1992; 13: 401–411
  • Mansour A., Khachaturian H., et al. Anatomy of CNS opioid receptors. Trends Neurosci. 1988; 11: 308–314
  • Mathur R., Dhawan L., Upadhyay R. Pain responses in rats exposed to 50 Hz magnetic fields for varied durations. Pain Updated: Mechanisms and Effects, R. Mathur. Anamaya Publishers, New Delhi 2006; 187–213
  • Mercer M. E., Holder M. D. Antinociceptive effects of palatable sweet ingesta of human responsivity to pressure pain. Physiol. Behav. 1997; 61: 311–318
  • Miller A., Ronald G. B., Simon N. Y. The cold pressor test in children: Methodological aspects and the analgesic effects of intraoral sucrose. Pain 1994; 56: 175–183
  • Mukherjee K., Mathur R., Nayar U. Effect of VMH lesion on sucrose-fed nociceptive responses. Jpn. J. Physiol. 2000; 50: 395–404
  • Mukherjee K., Mathur R., Nayar U. Nociceptive responses to chronic stress of restraint and noxious stimuli in sucrose fed rats. Stress Health 2001a; 17: 297–305
  • Mukherjee K., Mathur R., Nayar U. Ventromedial hypothalamic mediation of sucrose feeding induced pain modulation. Pharmacol. Biochem. Behav. 2001b; 68: 43–48
  • Mukherjee K., Mathur R., Nayar U. Hyperalgesic response in rats fed sucrose from weaning to adulthood: role of VMH. Pharmacol. Biochem. Behav. 2002; 73: 601–610
  • Narasaiah B. M., Mathur R., Nayar U. Amygdalar involvement in pain. Ind. J. Physiol. Pharmacol. 1995; 39: 339–346
  • Papi F., Ghione S., et al. Exposure to oscillating magnetic fields influences sensitivity to electrical stimuli: experiments on human. Bioelectromagnetics 1995; 16: 295–300
  • Pittman Q. J., Blume H. W., et al. Influences of midbrain stimulation on excitability of neurons in the medial hypothalamus of rats. Brain Res. 1979; 174: 39–53
  • Prato F. S., Carson J. J. L., et al. Possible mechanisms by which extremely low frequency magnetic fields affects opioid functions. FASEB J. 1995; 9: 807–814
  • Prato F. S., Kavaliers M., Thomas A. W. Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions. Biolectromagnetics 2001; 21: 287–301
  • Schoenbaum G., Martin R. J., Roane D. S. Relationship between sustained sucrose feeding and opioid tolerance and withdrawal. Pharmacol. Biochem. Behav. 1989; 34: 911–914
  • Shen K.-F., Crain S. M. Chronic selective activation of excitatory opioid receptors functions in sensory neurons results in opioid dependence without tolerance. Brain Res. 1992; 597: 74–83
  • Tseng L. F., Collins K. A. Different mechanisms mediating tail flick inhibition induced by β-endorphin, DAMGO and morphine from ROb and GiA in anaesthetized rats. J. Pharmacol. Exp. Ther. 1991; 257: 530–538
  • Tseng L. F., Wei E. T., et al. β-endorphin central sites of analgesia catalepsy and body temperature changes in rats. J. Pharmacol. Exp. Ther. 1980; 214: 328–332
  • Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16: 109–110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.