116
Views
22
CrossRef citations to date
0
Altmetric
Original

Biophysical Cancer Transformation Pathway

Pages 105-123 | Published online: 21 Jul 2009

References

  • Abercrombie M., Ambrose E. J. The surface properties of cancer cells: A review. Cancer Res. 1962; 22: 525–548
  • Alberts, B., Bray, D.,, Lewis, J., et al. Molecular Biology of the Cell. Garland Publishing, New York & London 1994
  • Albrecht-Buehler G. Surface extensions of 3T3 cells towards distant infrared light sources. J. Cell. Biol. 1991; 114: 493–502
  • Albrecht-Buehler G. Rudimentary form of cellular ‘vision.’. Proc. Natl. Acad. Sci. USA 1992; 89: 8288–8293
  • Albrecht-Buehler G. A long-range attraction between aggregating 3T3 cells mediated by near-infrared light scattering. PNAS 2005; 102: 5050–5055
  • Batyanov A. P. Distant optical interaction of the mitochondria through quartz. Byuleten Experimentalnoj Biologii i Meditsiny 1984; 97/6: 675–677, (in Russian).
  • Batyanov A. P. Correlation of the metabolism of mitochondria and spontaneous luminescence of incubation cuvettes. Biofizika 1988; 33: 1029–1034, (in Russian).
  • Batyanov A. P. Correlation between mitochondria metabolism and the physical characteristics of incubation cells. Biophotonics. Non- equilibrium and Coherent Systems in Biology, Biophysics and Biotechnology, L. Belousov, F. A. Popp. Bioinform. Services Co, Moscow 1995; 439–446
  • Beil M., Micoulet A., von Wichert G., et al. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell. Biol. 2003; 5: 803–811
  • Bitler A., Korenstein R. Nano-scale fluctuations of red blood cell membrane reveal nonlinear dynamics. Biophys. J. 2004; 86: 582a
  • Bonnet S., Archer S. L., Allalunis-Turner J., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007; 11: 37–51
  • Carew J. S., Huang P. Mitochondrial defects in cancer. Mol. Cancer 2002; 1: 9–20
  • Cucullo L., Dini G., Hallene K. L., et al. Very low intensity alternating current decreases cell proliferation. Glia 2005; 51: 65–72
  • Cuezva J. M., Krajewska M., López de Heredia M., et al. The bioenergetic signature of cancer: A marker of tumor progression. Cancer Res. 2002; 62: 6674–6681
  • Fröhlich H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 1968a; 26: 402–403
  • Fröhlich H. Long-range coherence and energy storage in biological systems. Int. J. Quant. Chem. 1968b; II: 641–649
  • Fröhlich H. Quantum mechanical concepts in biology. Theoretical Physics and Biology, M. Marois. North Holland, Amsterdam 1969; 13–22, (Proc. 1st Int. Conf. Theor. Phys. Biol., Versailles).
  • Fröhlich H. Long range coherence and the action of enzymes. Nature (London) 1970; 228: 1093
  • Fröhlich H. Selective long range dispersion forces between large systems. Phys. Lett. A 1972; 39: 153–154
  • Fröhlich H. Collective behaviour of non-linearly coupled oscillating fields (with applications to biological systems). J. Collective Phenom. 1973a; 1: 101–109
  • Fröhlich H. General introduction. From Theoretical Physics to Biology, M. Marois. Karger S, Basel 1973b; 2–6
  • Fröhlich H. Organisation and long range selective interaction in biological and other pumped systems. Synergetics—Cooperative Phenomena in Multi-Component Systems, H. Haken. Teubner B. G, Stuttgart 1973c; 241–245
  • Fröhlich H. The connection between macro- and microphysics. Riv. del Nuovo Cimento 1973d; 3: 490–534
  • Fröhlich H. The extraordinary dielectric properties of biological materials and the action of enzymes. Proc. Natl. Acad. Sci. USA 1975; 72: 4211–4215
  • Fröhlich H. Biological control through long range coherence. Synergetics, H. Haken. Springer, Berlin–Heidelberg–New York 1977a; 241–246
  • Fröhlich H. Coherent excitations in biological systems [Kogerentnyje vozbuzhdenija v biologicheskikh systemach]. Biofizika 1977b; XXII: 743–744
  • Fröhlich H. Long range coherence in biological systems. Riv. del Nuovo Cimento 1977c; 7: 399–418
  • Fröhlich H. Possibilities of long- and short-range electric interactions of biological systems. Neurosci. Res. Program Bull. 1977d; 15: 67–72
  • Fröhlich H. Coherent electric vibrations in biological systems and cancer problem. IEEE Trans. 1978; MTT-26: 613–617
  • Fröhlich H. The biological effects of microwaves and related questions. Adv. Electron. Electron. Phys. 1980; 53: 85–152
  • González-Cabo P., Vázquez-Manrique R. P., Garcia-Gimeno M. A., et al. Frataxin interacts functionally with mitochondrial electron transport chain proteins. Human Molec. Genet. 2005; 14: 2091–2098
  • Guck J., Schinkinger S., Lincoln B., et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 2005; 88: 3689–3698
  • Hölzel R., Lamprecht I. Electromagnetic fields around biological cells. Neur. Net. World 1994; 4: 27–337
  • Kirson E. D., Dbalý V., Tovaryš F., et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. PNAS 2007; 104: 10152–10157
  • Kirson E. D., Gurvich Z., Schneiderman R., et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004; 64: 3288–3295
  • Lamprecht I., Hölzel R. Microdielectrophoretic effects of cells. Biophysical Aspects of Cancer, J. Fiala, J. Pokorný. Charles University, Prague 1987; 124–130
  • Levin A., Korenstein R. Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton. Biophys. J. 1991; 60: 733–737
  • Lill R., Mühlenhoff U. Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 2005; 30: 133–141
  • Pelling A. E., Sehati S., Gralla E. B., et al. Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomed. Nanotechnol. Biol. Med. 2005; 1: 178–183
  • Pelling A. E., Sehati S., Gralla E. B., et al. Local nano-mechanical motion of the cell wall of Saccharomyces cerevisiae. Science 2004; 305: 1147–1150
  • Pohl, H. A. Dielectrophoresis. Cambridge University Press, London 1978
  • Pohl H. A. Oscillating fields about growing cells. Int. J. Quant. Chem. Quant. Biol. Symp. 1980; 7: 411–431
  • Pohl H. A., Braden T., Robinson S., et al. Life cycle alterations of the micro-dielectrophoretic effects of cells. J. Biol. Phys. 1981; 9: 133–154
  • Pokorný, J., Wu, T.-M. Biophysical Aspects of Coherence and Biological Order. Springer, Praha: Academia, Berlin–Heidelberg–New York 1998
  • Pokorný J. Endogenous electromagnetic forces in living cells: Implications for transfer of reaction components. Electro. Magnetobiol. 2001; 20: 59–73
  • Pokorný J. Viscous effects on polar vibrations in microtubules. Electromag. Biol. Med. 2003; 22: 15–29
  • Pokorný J. Excitation of vibration in microtubules in living cells. Bioelectrochemistry 2004; 63: 321–326
  • Pokorný J. The role of Fröhlich's coherent excitations in cancer transformation of cells. Herbert Fröhlich, FRS: A Physicist Ahead of His Time, G. J. Hyland, P. Rowlands. The University of Liverpool, Liverpool, England 2006; 177–207
  • Pokorný J., Fiala J., Vacek K. Fröhlich coherent vibrations and Raman scattering. Czechoslovak J. Phys. 1991; 41: 484–491
  • Pokorný J., Hašek J., Jelínek F. Electromagnetic field in microtubules: Effects on transfer of mass particles and electrons. J. Biol. Phys. 2005a; 31: 501–514
  • Pokorný J., Hašek J., Jelínek F. Endogenous electric field and organization of living matter. Electromag. Biol. Med. 2005b; 24: 185–197
  • Pokorný J., Hašek J., Vaniš J., Jelínek F. Biophysical aspects of cancer—Electromagnetic mechanism. Ind. J. Exper. Biol. 2008; 46: 310–321
  • Qian X. S., Zhang J. Q., Ru C. Q. Wave propagation in orthotropic microtubules. J. Appl. Phys. 2007; 101: 084702–1–084702–7
  • Reed E. J., Soljačić M., Gee R., Joannopoulos J. D. Coherent optical photons from shock waves in crystals. Phys. Rev. Lett. 2006; 96: 013904–1–013904–4
  • Ristow M., Pfister M. F., Yee A. J., et al. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 2000; 97: 12239–12243
  • Rossignol R., Gilkerson R., Aggeler R., et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004; 64: 985–993
  • Rowlands S. Coherent excitation in blood. Coherent Excitation in Biological Systems, H. Fröhlich, F. Kremer. Springer, Berlin–Heidelberg–New York 1983; 145–161
  • Rowlands S. The interaction of living red blood cells. Biological Coherence and Response to External Stimuli, H. Fröhlich. Springer, Berlin–Heidelberg–New York 1988; 171–191
  • Rowlands S., Sewchand L. S. Quantum mechanical interaction of human erythrocytes. Canad. J. Physiol. Pharmacol. 1982; 60: 52–59
  • Rowlands S., Sewchand L. S., Enns E. G. Further evidence for a Fröhlich interaction of erythrocytes. Phys. Lett. A 1982; 87: 256–260
  • Rowlands S., Sewchand L. S., Lovlin R. E., et al. A Fröhlich interaction of human erythrocytes. Phys. Lett. A 1981; 82: 436–438
  • Roy S. C., Braden T., Pohl H. A. Possibility of existence of pseudoferroelectric state in cells: some experimental evidence. Phys. Lett. A 1981; 83: 142–143
  • Satarić M., Tuszyński J. A., Žakula R. B. Kinklike excitations as an energy transfer mechanism in microtubule. Phys. Rev. E 1993; 48: 589–597
  • Schoichet S. A., Bäumer A. T., Stamenkovic D., et al. Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro. Hum. Molec. Genet. 2002; 11: 815–821
  • Sewchand L. S., Rowlands S. Specificity of the Fröhlich interaction of erythrocytes. Phys. Lett. A 1983; 93: 363–364
  • Sirenko Y. M., Stroscio M. A., Kim K. W. Elastic vibrations of microtubules in a fluid. Phys. Rev. E 1996; 53: 1003–1010
  • Suresh S. Biomechanics and biophysics of cancer cells. Acta Materialia 2007; 55: 3989–4014
  • Suresh S., Spatz J., Mills J. P., et al. Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomaterialia 2005; 1: 15–30
  • Thierbach R., Schulz T. J., Isken F., et al. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Hum. Molec. Genet. 2005; 14: 3857–3864
  • Tuszyński J. A., Hameroff S., Satarić M., et al. Ferroelectric behavior in microtubule dipole lattices: Implications for conformation processing, signaling and assembly/disassembly. J. Theor. Biol. 1995; 174: 371–380
  • Tuszyński J. A., Luchko T., Portet S., Dixon J. M. Anisotropic elastic properties of microtubules. Eur. Phys. J. 2005; 17: 29–35
  • Tuvia S., Almagor A., Bitler A., et al. Cell membrane fluctuations are regulated by medium macroviscosity: Evidence for a metabolic driving force. Proc. Natl. Acad. Sci. USA 1997; 94: 5045–5049
  • Tuvia S., Bitler A., Korenstein R. Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes. J. Cell. Biol. 1998; 141: 1551–1561
  • Tuvia S., Moses A., Gulayev N., et al. β-Adrenergic agonists regulate cell membrane fluctuation of human erythrocytes. J. Physiol. 1999; 516: 781–793
  • Tyner K. M., Kopelman R., Philbert M. A. “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 2007; 93: 1163–1174
  • Vos M. H., Jones M. R., Hunter C. N., et al. Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry 1994a; 33: 6750–6757
  • Vos M. H., Jones M. R., Hunter C. N., et al. Coherent nuclear-dynamics at room temperature in bacterial reaction centers. Proc. Natl. Acad. Sci. USA 1994b; 91: 12701–12705
  • Vos M. H., Jones M. R., Martin J.-L. Vibrational coherence in bacterial reaction centers: Spectroscopic characterisation of motions active during primary electron transfer. Chem. Phys. 1998; 233: 179–190
  • Vos M. H., Jones M. R., McGlynn P., et al. Influence of the membrane environment on vibrational motions in reaction centers of Rhodobacter sphaeroides. Biochem. Biophys. Acta 1994c; 1186: 117–122
  • Vos M. H., Lambry J. C., Robles S. J., et al. Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. Proc. Natl. Acad. Sci. USA 1991; 88: 8885–8889
  • Vos M. H., Rappaport F., Lambry J. C., et al. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 1993; 363: 320–325
  • Vos M. H., Rischel C., Jones M. R., Martin J. L. Electrochromic detection of a coherent component in the formation of the charge pair P+HL− in bacterial reaction centers. Biochemistry 2000; 39: 8353–8361
  • Wang C. Y., Ru C. Q., Mioduchowski A. Vibration of microtubules as orthotropic elastic shells. Physica E 2006; 35: 48–56
  • Warburg O., Posener K., Negelein E. Über den Stoffwechsel der Carcinomzelle. Biochem. Z 1924; 152: 309–344
  • Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.