2,989
Views
6
CrossRef citations to date
0
Altmetric
Articles

Warburg effect—damping of electromagnetic oscillations

, &
Pages 270-278 | Received 09 Nov 2016, Accepted 02 May 2017, Published online: 02 Jun 2017

References

  • Alberts, B., Bray, D., Lewis, J., et al. (1994). Molecular Biology of the Cell, 3rd. ed. New York, NY: Garland Publishing Inc.
  • Albrecht-Buehler, G. (1992). Rudimentary form of cellular ‘vision’. PNAS. 89:8288–8293.
  • Albrecht-Buehler, G. (2005). A long-range attraction between aggregating 3T3 cells mediated by near-infrared light scattering. PNAS. 102:5050–5055.
  • Amos, L. A. (1979). Structure of Microtubules. In: Roberts, K., and Hyam, J. S. ed. Microtubules. London, New York:Academic Press. pp. 1–64.
  • Arani, R., Bono, I., Del Giudice, E., and Preparata, G. (1995). QED coherence and the thermodynamics of water. Int. J. Mod. Phys. B. 5:1813–1841.
  • Bartons, R., and Caro, J. (2007). Hypoxia, glucose metabolism and the Warburg’s effect. J. Bioenerg. Biomembr. 39:223–229.
  • Bonnet, S., Archer, S. L., Allalunis-Turner, J., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 11:37–51.
  • Chen, L. B. (1988). Mitochondrial membrane potential in living cells. Ann. Rev. Cell. Biol. 4:155–181.
  • Chen, Z., Lu, W., Garcia-Prieto, C., and Huang, P. (2007). The Warburg effect and its cancer therapeutic implications. J. Bioenerg. Biomembr. 39:267–274.
  • Cuezva, J. M., Sánchez-Aragó, M., Sala, S., et al. (2007). A message emerging from development: The repression of mitochondrial β-F1-ATPase in cancer. J. Bioenerg. Biomembr. 39:259–265.
  • Dakubo, G. D. (2010). Mitochondrial Genetics and Cancers. New York, NY: Springer-Verlag.
  • Del Giudice, E., Elia, V., and Tedeschi, A. (2009). The role of water in the living organisms. Neural. Netw. World. 19:355–360.
  • Del Giudice, E., and Preparata, G. (1998). A new QED picture of water: Understanding a few fascinating phenomena. In: Sassaroli, E., Srivastava, Y., Swain, J., and Widom, A. ed. Proceedings of the International Conference on Macroscopic Quantum Coherence. Singapore, Singapore: World Scientific. pp. 108–129.
  • Del Giudice, E., Preparata, G., and Vitiello, G. (1988). Water as a free electric dipole laser. Phys. Rev. Lett. 61:1085–1088.
  • Del Giudice, E., and Tedeschi, A. (2009). Water and autocatalysis in living matter. Electromagn. Biol. Med. 28:46–52.
  • Fröhlich, H. (1969). Quantum mechanical concepts in biology. In: Marois, M. ed. Theoretical Physics and Biology. Amsterdam, The Netherlands: North Holland. Proc. 1st Int. Conf. Theor. Phys. Biol., Versailles, 1967. pp. 13–22.
  • Fuchs, E. C., Bitschnau, B., Woisetschläger, J., et al. (2009). Neutron scattering of a floating heavy water bridge. J. Phys. D Appl. Phys. 42:065502. 1–4.
  • Fuchs, E. C., Gatterer, K., Holler, G., and Woisetschläger, J. (2008). Dynamics of the floating water bridge. J. Phys. D Appl. Phys. 41:185502. 1–5.
  • Fuchs, E. C., Woisetschläger, J., Gatterer, K., et al. (2007). The floating water bridge. J. Phys. D Appl. Phys. 40:6112–6114.
  • Gillies, R. J., and Gatenby, R. A. (2007). Adaptive landscapes and emergent phenotypes: Why do cancers have high glycolysis? J. Bioenerg. Biomembr. 39:251–257.
  • Godinot, C., De Laplanche, E., Hervouet, E., and Simonnet, H. (2007). Actuality of Warburg’s views in our understanding of renal cancer metabolism. J. Bioenerg. Biomembr. 39:235–241.
  • Herrmann, P. C., and Herrmann, E. C. (2007). Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J. Bioenerg. Biomembr. 39:247–250.
  • Hölzel, R. (2001). Electric activity of non-excitable biological cells radio frequencies. Electro. Magnetobiol. 20:1–13.
  • Jandová, A., Pokorný, J., Kobilková, J., et al. (2009). Cell-mediated immunity in cervical cancer evolution. Electromagn. Biol. Med. 28:1–14.
  • Jandová, A., Pokorný, J., Pokorný, J., et al. (2015). Diseases caused by defects of energy level and loss of coherence in living cells. Electromagn. Biol. Med. 34:151–155.
  • Jelínek, F., Cifra, M., Pokorný, J., et al. (2009). Measurement of electrical oscillations and mechanical vibrations of yeast cells membrane around 1 kHz. Electromangn. Biol. Med. 28:223–232.
  • Johnson, L. V., Summerhayes, I. C., and Chen, L. B. (1982). Decreased uptake and retention of Rhodamine 123 by mitochondria in feline sarcoma virus-transformed mink cells. Cell. 28:7–14.
  • Kasas, S., Ruggeri, F. S., Benadiba, C., et al. (2014). Detecting nanoscale vibrations as signature of life. PNAS. 112:378–381.
  • Klingenberg, M., and Rottenberg, H. (1977). Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane. Eur. J. Biochem. 73:125–130.
  • Kolobova, E., Tuganova, A., Boulatnikov, I., and Popov, K. M. (2001). Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem. J. 358:69–77.
  • Lampidis, T. J., Bernal, S. D., Summerhayes, I. C., and Chen, L. B. (1983). Selective toxicity of Rhodamine 123 in carcinoma cells in Vitro. Cancer Res. 43:716–720.
  • Ma-Ho, W., Sung, H. J., Park, J. Y., et al. (2007). A pivotal role for p53: Balancing aerobic respiration and glycolysis. J. Bioenerg. Biomembr. 39:243–246.
  • Marchettini, N., Del Giudice, E., Voeikov, V., and Tiezzi, E. (2010). Water: A medium where dissipative structures are produced by a coherent dynamics. J. Theor. Biol. 265:511–516.
  • Modica-Napolitano, J. S., and Aprille, J. R. (1987). Basis for selective cytotoxicity of Rhodamine 123. Cancer Res. 47:4361–4365.
  • O’Connor, J. E., Vargas, J. L., Kimler, B. F., et al. (1988). Use of Rhodamine 123 to investigate alterations in mitochondrial activity in isolated mouse liver mitochondria. Biochem. Biophys. Res. Commun. 151:568–573.
  • Pavlides, S., Whitaker–Menezes, D., Castello-Cros, R., et al. (2009). Reverse Warburg effect. Aerobic glycolysis and cancer associated fibroblasts and their tumor stroma. Cell Cycle. 8:3984–4001.
  • Pedersen, P. L. (2007). Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e. elevated glycolysis in the presence of oxygen. J. Bioenerg. Biomembr. 39:211–222.
  • Pelling, A. E., Sehati, S., Gralla, E. B., et al. (2004). Local nano–mechanical motion of the cell wall of Saccharomyces cerevisiae. Science. 305:1147–1150.
  • Pelling, A. E., Sehati, S., Gralla, E. B., and Gimzewski, J. K. (2005). Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomed: Nanotechnol. Biol. Med. 1:178–183.
  • Pohl, H. A., Braden, T., Robinson, S., et al. (1981). Life cycle alterations of the micro–dielectrophoretic effects of cells. J. Biol. Phys. 9:133–154.
  • Pokorný, J. (2012). Physical aspects of biological activity and cancer. AIP Adv. 2:0112071.11.
  • Pokorný, J., Foletti, A., Kobilková, J., et al. (2013a). Biophysical insight into cancer transformation and treatment. Sci. World J. 2013. 195028:1–11.
  • Pokorný, J., Hašek, J., Jelínek, F., et al. (2001). Electromagnetic activity of yeast cells in the M phase. Electro- Magnetobiol. 20:371–396.
  • Pokorný, J., Jelínek, F., Trkal, V., et al. (1997). Vibrations in microtubules. J. Biol. Phys. 23:171—179.
  • Pokorný, J., and Pokorný, J. (2013). Biophysical pathology in cancer transformation. J. Clinic. Exper. Oncology. S1–003. 10.4172/2324-9110.S1-003
  • Pokorný, J., Pokorný, J., Jr, Foletti, A., et al. (2015). Mitochondrial dysfunction and disturbed coherence: Gate to cancer. Pharmaceuticals. 8:675–695.
  • Pokorný, J., Pokorný, J., Jr, Jandová, A., et al. (2016). Energy parasites trigger oncogene mutation. Int. J. Rad. Biol. 10:577–582.
  • Pokorný, J., Pokorný, J., and Kobilková, J. (2013b). Postulates on electromagnetic activity in biological systems and cancer. Integrat. Biol. 5:1439–1446.
  • Pokorný, J., Pokorný, J., Kobilková, J., et al. (2014). Cancer – pathological breakdown of coherent energy states. Biophys. Rev. Lett. 9:115–133.
  • Pokorný, J., Vedruccio, C., Cifra, M., and Kučera, O. (2011). Cancer physics: Diagnostics based on damped cellular elastoelectrical vibrations in microtubules. Eur. Biophys. J. 40:747–759.
  • Preparata, G. (1995). QED Coherence in Matter. New Jersey, London, Hong Kong, China: World Scientific.
  • Sahu, S., Ghosh, S., Fujita, D., and Bandyopadhyay, A. (2014). Live visualizations of single isolated tubulin protein self-assembly via tunneling current: Effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 4:7303. 1–9.
  • Sahu, S., Ghosh, S., Ghosh, B., et al. (2013). Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47:141–148.
  • Semenza, G. L. (2007). HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J. Bioenerg. Biomembr. 39:231–234.
  • Summerhayes, I. C., Lampidis, T. J., Bernal, S. D., et al. (1982). Unusual retention of Rhodamine 123 by mitochondria in muscle and carcinoma cells. PNAS. 79:5292–5296.
  • Tyner, K. M., Kopelman, R., and Philbert, M. A. (2007). “Nanosized voltmeter” enables cellular–wide mapping. Biophys. J. 93:1163–1174.
  • Vedruccio, C., and Meessen, A. (2004). EM cancer detection by means of non linear resonance interaction. In Proceedings PIERS progress in electromagnetic research symposium (pp. 909–912). Pisa, March 28–31.
  • Voeikov, V. (2007). Fundamental Role of Water in Bioenergetics. In Beloussov, L. V., Voeikov, V. L., Martynyuk, V. S., ed. Biophotonics and Coherent Systems in Biology. New York: Springer Science + Business Media, LLC. pp. 89–104.
  • Warburg, O. (1956). On the origin of cancer cells. Science. 123:309–314.
  • Warburg, O., Posener, K., and Negelein, E. (1924). Über den Stoffwechsel der Carcinomzelle. [Metabolism of a cancer cell]. Biochem. Z. 152:309–344. (in German).
  • Wiseman, A., Fields, T. K., and Chen, L. B. (1985). Human cell variants resistant to Rhodamine 6G. Somatic Cell. Mol. Gen. II:541–556.
  • Zheng, J., Chin, W. C., Khijniak, E., et al. (2006). Surfaces and interfacial water: Evidence that hydrophilic surfaces have long–range impact. Advanc. Colloid Interface Sci. 127:19–27.
  • Zheng, J., and Pollack, G. H. (2003). Long–range forces extending from polymer–gel surfaces. Phys. Rev. E. 68:031408. 1–7.