285
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer’s disease

, , , , &
Pages 127-137 | Received 11 Feb 2018, Accepted 29 Apr 2018, Published online: 17 May 2018

References

  • Alberto, D., Busso, L., Crotti, G., et al (2008) Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic current of glutamic acid aqueous solutions. Electromagn. Biol. Med. 27:25–39. doi 10.1080/15368370701878788.
  • Aleksandrova, I. Y., Kuvichkin, V. V., Kashparov, I. A., et al (2004) Increased level of beta-amyloid in the brain of bulbectomized mice. Biochemistry (Moscow). 69:176–180. doi 10.1023/B:BIRY.0000018948.04559.ab.
  • Arendash, G., Sanchez-Ramos, J., Mori, T., et al (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J. Alzheimers Dis. 19:191–210. doi 10.3233/JAD-2010-1228.
  • Avetisyan, A. V., Samokhin, A. N., Alexandrova, I. Y., et al (2016) Mitochondrial dysfunction in neocortex and hippocampus of olfactory bulbectomized Mice, a model of Alzheimer’s disease. Biochemistry (Mosc). 81:615–623. doi 10.1134/S0006297916060080.
  • Blackman, C. F., Benane, S. G., House, D. E., et al (1985) Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6:1–11. doi 10.1002/bem.2250060102.
  • Blackman, C. F., Blanchard, J., Benane, S. G., et al (1994) Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics. 15:239–260. doi 10.1002/bem.2250150307.
  • Bobkova, N. V., Nesterova, I. V., Dana, R., et al (2004) Morphofunctional changes in neurons in the temporal cortex of the brain in relation to spatial memory in bulbectomized mice after treatment with mineral ascorbates. Neurosci. Behav. Physiol. 34:671–676. doi 10.1023/B:NEAB.0000036005.70153.3b.
  • Bobkova, N. V., Nesterova, I. V., and Nesterov, V. V. (2001). The state of cholinergic structures in forebrain of bulbec-tomized mice. Bull. Exp. Biol. Med. 131:427–431. doi 10.1023/A:1017907511482.
  • Bobkova, N. V., Vorobyov, V. V., Medvinskaya, N. I., et al (2008) Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels. Brain Res. 1232:185–194. doi 10.1016/j.brainres.2008.07.036.
  • Capurso, S., Calhoun, M., Sukhov, R., et al (1997) Deafferentation causes apoptosis in cortical sensory neurons in the adult rat. J. Neurosci. 17:7372–7374. doi 10.1523/JNEUROSCI.17-19-07372.1997.
  • Comisso, N., Del Giudice, E., De Ninno, A., et al (2006) Dynamics of the ion cyclotron resonance effect on amino acids adsorbed at the interfaces. Bioelectromagnetics. 27:16–25. doi 10.1002/bem.20171.
  • Del Giudice, E., Fleischmann, M., Preparata, G., et al (2002) On the “unreasonable” effects of ELF magnetic field upon a system of ions. Bioelectromagnetics. 23:522–530. doi 10.1002/bem.10046.
  • Fesenko, E. E., Novikov, V. V., and Bobkova, N. V. (2003) Destruction of amyloid beta-protein by exposure to weak magnetic fields. Biofizika. 48:217–220.
  • Fesenko, E. E., Novikov, V. V., Kuvichkin, V. V., et al (2000) Effect of treated with weak magnetic field aqueous salt solutions on the intrinsic fluorescence of bovine serum albumin. Isolation from solutions and partial characterization of the biologically active fluorescing fraction. Biofizika. 45:232–239.
  • Garcia, A., Sisternas, A., and Hoyos, S. (2008). Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: A meta-analysis. Int. J. Epidemiol. 37:329–340. doi 10.1093/ije/dym295.
  • Giuliani, L., Grimaldi, S., Lisi, A., et al (2008) Action of combined magnetic fields on aqueous solution of glutamic acid: The further development of investigations. Biomagn. Res. Technol. 6:1. doi 10.1186/1477-044X-6-1.
  • Gulyaeva, N. V., Bobkova, N. V., Kolosova, N. G., et al (2017) Molecular and cellular mechanisms of sporadic Alzheimer’s disease: Studies on rodent models in vivo. Biochemistry (Mosc). 82:1088–1102. doi 10.1134/S0006297917100029.
  • Hakansson, N., Gustavsson, P., Johansen, C., et al (2003) Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology. 14:420–426. doi 10.1097/01.EDE.0000078446.76859.c9.
  • Han, F., Shioda, N., Moriguchi, S., et al (2008) The vanadium (IV) compound rescues septo-hippocampal cholinergic neurons from neurodegeneration in olfactory bulbectomized mice. Neuroscience. 151:671–679. doi 10.1016/j.neuroscience.2007.11.011.
  • Herregodts, P., Bruyland, M., De Keyser, J., et al (1989) Monoaminergic neurotransmitters in Alzheimer’s disease. An HPLC study comparing presenile familial and sporadic senile cases. J. Neurol. Sci. 92:101–116. doi 10.1016/0022-510X(89)90179-2.
  • Holtzman, D. (2008). Alzheimer’s disease: Moving towards a vaccine. Nature. 454:418–420. doi 10.1038/454418a.
  • Hozumi, S., Nakagawasai, O., Tan-No, K., et al (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav. Brain Res. 138:9–15. doi 10.1016/S0166-4328(02)00183-3.
  • Hug, K., Röösli, M., and Rapp, R. (2006). Magnetic field exposure and neurodegenerative diseases – Recent epidemiological studies. Soz Praventivmed. 51:210–220. doi 10.1007/s00038-006-5096-4.
  • Kheifets, L., Bowman, J., Checkoway, H., et al (2009) Future needs of occupational epidemiology of extremely low frequency electric and magnetic fields: Review and recommendations. Occup. Environ. Med. 66:72–80. doi 10.1136/oem.2007.037994.
  • Koliatsos, V., Dawson, T., Kecojevic, A., et al (2004) Cortical interneurons become activated by deafferentation and instruct the apoptosis of pyramidal neurons. Proc. Natl. Acad. Sci. USA. 101:14264–14269. doi 10.1073/pnas.0404364101.
  • Leonard, B., and Tuite, M. (1981) Anatomical, physiological, and behavioral aspects of olfactory bulbectomy in the rat. Int. Rev. Neurobiol. 22:251–286.
  • Lerchi, A., Reiter, R., Howes, K., et al (1991) Evidence that extremely low frequency Ca-cyclotron resonance depresses pineal melatonin synthesis in vitro. Neurosci. Lett. 124:213–215. doi 10.1016/0304-3940(91)90096-C.
  • Leung, C., and Wilson, D. (2003). Trans-neuronal regulation of cortical apoptosis in the adult rat olfactory system. Brain Res. 984:182–188. doi 10.1016/S0006-8993(03)03129-9.
  • Liboff, A. R. (1985) Cyclotron resonance in membrane transport. In: Chiabrera, A., Nicolini, C., and Schwan, H. P., eds. Interaction between Electromagnetic Fields and Cells. London: Plenum Press. pp. 281–296.
  • Lovely, R., Creim, J., Miller, D., et al (1993). Behavior of rats in a radial arm maze during exposure to magnetic fields: Evidence for effects of magnesium ion resonance. 15th Annual Meeting BEMS 1993; Abstract E1–6.
  • Moriguchi, K., Han, F., Nakagawasai, O., et al (2006) Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J. Neurochem. 97:22–29. doi 10.1111/j.1471-4159.2006.03710.x.
  • Nesterova, I. V., Bobkova, N. V., Medvinskaya, N. I., et al (2008) Morphofunctional state of neurons in the temporal cortex and hippocampus in relation to the level of spatial memory in rats after ablation of the olfactory bulbs. Neurosci. Behav. Physiol. 38:349–353. doi 10.1007/s11055-008-0048-5.
  • Nesterova, I. V., Gurevich, E., Nesterov, V. V., et al (1997) Bulbectomy-induced loss of raphe neurons is counter-acted by antidepressant treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry. 21:127–140. doi 10.1016/S0278-5846(96)00163-7.
  • Novikov, V.V., Zhadin, M.N. (1994) Combined action of weak static and alternating low-frequency magnetic fields on ionic current in aqueous amino acid solutions. Biofizika 39:45–49.
  • Novikov, V. V. (1996) Cooperative effect of the resonance amplification of ionic current in aqueous solution of amino acids under the action of weak electromagnetic fields. Approaches to experimental and theoretical analysis. Biofizika. 41:973–978.
  • Novikov, V. V. (1998) Electromagnetic bioengineering. Biofizika. 43:588–593.
  • Novikov, V. V., and Fesenko, E. E. (2001) Hydrolysis of various peptides and proteins in weak permanent and low frequency fluctuating magnetic fields. Biofizika. 46:235–241.
  • Novikov, V. V., Novikov, G. V., and Fesenko, E. E. (2009). Effect of weak combined static and extremely low-frequency alternating magnetic fields on tumor growth in mice inoculated with the Ehrlich ascites carcinoma. Bioelectromagnetics. 30:343–351. doi 10.1002/bem.v30:5.
  • Novikov, V. V., Ponomarev, V. O., Novikov, G. V., et al (2010) Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields. Biophys. (Moscow) . 55:565–572. doi 10.1134/S0006350910040081.
  • Novikov, V. V., Sheiman, I. M., and Fesenko, E. E. (2008). Effect of weak static and low-frequency alternating magnetic fields on the fission and regeneration of the planarian Dugesia (Girardia) tigrina. Bioelectromagnetics. 29:387–393. doi 10.1002/(ISSN)1521-186X.
  • Novikov, V. V., Yablokova, E. V., and Fesenko, E. E. (2015). The action of combined magnetic fields with a very weak low-frequency alternating component on luminol-dependent chemiluminescence in mammalian blood. Biophys. (Moscow) . 60:429–432. doi 10.1134/S0006350915030124.
  • Novikov, V. V., Yablokova, E. V., and Fesenko, E. E. (2016a). The effect of weak magnetic fields on the chemiluminescence of human blood. Biophys. (Moscow) . 61:105–108. doi 10.1134/S0006350916010206.
  • Novikov, V. V., Yablokova, E. V., and Fesenko, E. E. (2016b). Priming of the respiratory burst in neutrophils exposed to a combination of weak constant and alternating low-frequency magnetic fields in vitro. Biophys. (Moscow) . 61:429–434. doi 10.1134/S000635091603012X.
  • Novikov, V. V., Yablokova, E. V., and Fesenko, E. E. (2016c). The effect of weak magnetic fields on the production of reactive oxygen species in neutrophils. Biophys. (Moscow) . 61:959–962. doi 10.1134/S0006350916060208.
  • Novikov, V. V., Yablokova, E. V., and Fesenko, E. E. (2017). The role of hydroxyl radicals and calcium ions in the priming of a respiratory burst in neutrophils and the increase in luminol-dependent blood chemiluminescence on exposure to combined magnetic fields with a very weak low-frequency alternating component. Biophys. (Moscow) . 62:440–443. doi 10.1134/S0006350917030149.
  • Novikov, V. V., and Zhadin, M. N. (1994) Combined action of weak constant and variable low-frequency magnetic fields on ionic currents in aqueous solutions of amino acid. Biophys. (Moscow) . 39:41–45.
  • Novoselova, E. G., Ogai, V., Sorokina, O., et al (2001) Effect of electromagnetic waves of the centimeter range and combined magnetic field on the production of the tumor necrosis factor in cells of mice with experimental tumors. Biofizika. 46:131–135.
  • Pazur, A. (2004). Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagnetic Res. Technol. 2:8. doi 10.1186/1477-044X-2-8.
  • Persinger, M. A., Cook, L. L., and Koren, S. A. (1999). Suppression of experimental allergic encephalomyelitis in rats exposed nocturnally to magnetic fields. Int. J. Neurosci. 100:107–116. doi 10.3109/00207450008999681.
  • Persinger, M. A., Saroka, K. S., Lavallee, C. F., et al (2010) Correlated cerebral events between physically and sensory isolated pairs of subjects exposed to yoked circumcerebral magnetic fields. Neurosci. Lett. 486:231–234. doi 10.1016/j.neulet.2010.09.060.
  • Persson, B., Lindvall, M., Malmgren, L., et al (1992) Interaction of low-level combined static and extremely low-frequency magnetic fields with calcium transport in normal and transformed human lympho-cytes and rat thymic cells. In: Norden, B., and Ramel, C., eds. Interaction Mechanisms of Low-Level Electromagnetic Fields and Living Systems. Oxford: Oxford Univ Press. pp. 199–209.
  • Ponomarev, V. O., Novikov, V. V., Karnaukhov, A. V., et al (2008) Effect of a weak electromagnetic field on the rate of hydrogen peroxide production in aqueous solutions. Biofizika. 53:197–204.
  • Rochev, Y., Narimanov, A., Sosunov, E., et al (1990) Effect of weak magnetic field on the rate of cell proliferation in culture. Studia Biophysica. 2:93–98.
  • Rosen, G. D., Williams, A. G., Capra, J. A., et al (2000) The mouse brain library @ www.mbl.org. Int. Mouse Genome Conf. 14:166. www.mbl.org.
  • Sandyk, R. (1994). Alzheimer’s disease: Improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields. Int. J. Neurosci. 76:185–225. doi 10.3109/00207459408986003.
  • Sandyk, R. (1995). Improvement in short-term visual memory by weak electromagnetic fields in Parkinson’s disease. Int. J. Neurosci. 81:67–82. doi 10.3109/00207459509015299.
  • Sandyk, R., and Iacono, R. (1994). Improvement by picoTesla range magnetic fields of perceptual-motor perform-ance and visual memory in a patient with chronic progressive multiple sclerosis. Int. J. Neurosci. 78:53–66. doi 10.3109/00207459408986046.
  • Sieck, M. (1972). The role of the olfactory system in avoidance learning and activity. Physiol. Behav. 8:705–710. doi 10.1016/0031-9384(72)90099-6.
  • Smith, S. D., McLeod, B. R., and Liboff, A. R. (1993). Effects of CR-tuned 60 Hz magnetic fields on sprouting and early growth of Raphanus-sativus. Bioelectrochem. Bioenergetics. 3:67–76. doi 10.1016/0302-4598(93)80021-L.
  • Solomon, B. (2009). Immunotherapeutic strategies for Alzheimer’s disease treatment. Scientific World J. 9:909–919. doi 10.1100/tsw.2009.99.
  • Song, C., and Leonard, B. (2005). The olfactory bulbectomised rat as a model of depression. Neurosci. Biobehav. Rev. 29:627–647. doi 10.1016/j.neubiorev.2005.03.010.
  • Takeuchi, A., Irizarry, M., Duff, K., et al (2000) Age-related amyloid beta deposition in transgenic mice over-expressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am. J. Pathol. 157:1413–1418. doi 10.1016/S0002-9440(10)64544-0.
  • Thomas, J. R., Schrot, J., and Liboff, A. R. (1986). Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics. 7:349–357. doi 10.1002/(ISSN)1521-186X.
  • Van Der Stelt, H., Breuer, M., Olivier, B., et al (2005) Permanent deficits in serotonergic functioning of olfactory bulbectomized rats: An in vivo microdialysis study. Biol. Psychiatry. 57:1061–1067. doi 10.1016/j.biopsych.2004.12.040.
  • Warner, M., Peabody, C., Flattery, J., et al (1986) Olfactory deficits and Alzheimer’s disease. Biol. Psychiat. 2:116–118. doi 10.1016/0006-3223(86)90013-2.
  • Yamamoto, T., Jin, J., and Watanabe, S. (1997). Characteristics of memory dysfunction in olfactory bulbectomized rats and the effects of cholinergic drugs. Behav. Brain Res. 83:57–62. doi 10.1016/S0166-4328(97)86046-9.
  • Yost, M., and Liburdy, R. (1992). Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 296:117–122. doi 10.1016/0014-5793(92)80361-J.
  • Zhadin, M. N., Deryugina, O. N., and Pisachenko, T. M. (1999). Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics. 20:378–386. doi 10.1002/(ISSN)1521-186X.
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., et al (1998) Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics. 19:41–45. doi 10.1002/(SICI)1521-186X(1998)19:1<41::AID-BEM4>3.0.CO;2-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.