289
Views
5
CrossRef citations to date
0
Altmetric
Articles

Resonant interaction between electromagnetic fields and proteins: A possible starting point for the treatment of cancer

&
Pages 155-168 | Received 22 Dec 2017, Accepted 13 May 2018, Published online: 18 Jul 2018

References

  • Adair, R. K. (2003). Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 24:39–48. doi 10.1002/(ISSN)1521-186X.
  • Adams, D. S., Masi, A., and Levin, M. (2007). H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134:1323–1335. doi 10.1242/dev.02812.
  • Aqvist, J., and Luzhkov, V. (2000). Ion permeation mechanism of the potassium channel. Nature 404:881–884. doi 10.1038/35009114.
  • Arcangeli, A., Bianchi, L., Becchetti, A., et al. (1995). A novel inward-rectifying K+ current with a cellcycle dependence governs the resting potential of mammalian neuroblastoma cells. J. Physiol. (Lond.) 489 (Pt 2):455–471.
  • Arcangeli, A., Crociani, O., Lastraioli, E., et al. (2009). Targeting ion channels in cancer: A novel frontier in antineoplastic therapy. Curr. Med. Chem. 16:66–93.
  • Arcangeli, A., Pillozzi, S., and Becchetti, A. (2012). Targeting ion channels in leukemias: A new challenge for treatment. Curr. Med. Chem. 19:683–696.
  • Balcer-Kubiczek, E. K., and Harrison, G. H. (1991). Neoplastic transformation of C3H/10T1/2 cells following exposure to 120 Hz modulated 2.45 GHz microwaves and phorbol ester tumour promoter. Radiation Research 126:65–72. doi 10.2307/3578172.
  • Barbault, A., Costa, F. P., Bottger, B., et al. (2009). Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumour-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res 28:51. doi 10.1186/1756-9966-28-121.
  • Bauer, R., Carrotta, R., Rischel, C., and Ogendal, L. (2000). Characterization and isolation of intermediates in β-lactoglobulin heat aggregation at high pH. Biophys. J. 79:1030–1038. doi 10.1016/S0006-3495(00)76331-4.
  • Becchetti, A. (2011). Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am. J. Physiol. Cell Physiol 301:C255–C265. doi 10.1152/ajpcell.00047.2011.
  • Becker, L., Bannwarth, M., Meisinger, C., et al. (2005). Preprotein translocase of the outer mitochondrial membrane: Reconstituted Tom 40 forms a characteristic TOM pore. J. Mol. Biol. 353:1011–1020. doi 10.1016/j.jmb.2005.09.019.
  • Berneche, S., and Roux, B. (2001). Energetics of ion conduction through the K+ channel. Nature 414:73–77. doi 10.1038/35102067.
  • Bhimarao, M. (2011). Collapsing Cancer Cells: Exploiting the Elasticity and Natural Frequency of a Cancer Cell’s Cytoskeleton. Project n.S1703: California State Science Fair.
  • Byler, D. M., and Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymer 25:469–487. doi 10.1002/bip.360250307.
  • Calabrò, E. (2016). Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field. Int. J. Radiat. Biol. 92:395–403. doi 10.1080/09553002.2016.1175679.
  • Calabrò, E., Condello, S., Currò, M., et al. (2012a). Modulation of HSP response in SH-SY5Y cells following exposure to microwaves of a mobile phone. World J. Biol. Chem. 3:34–40. doi 10.4331/wjbc.v3.i2.34.
  • Calabrò, E., Condello, S., Currò, M., et al. (2013a). Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics 34:618–629. doi 10.1002/bem.v34.8.
  • Calabrò, E., Condello, S., Currò, M., et al. (2013b). 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. In: Oxidative Medicine and Cellular Longevity 2013. Article ID 414393 8 pages.
  • Calabrò, E., and Magazù, S. (2015). Fourier –self –deconvolution analysis of β-sheet contents in the amide i region of haemoglobin aqueous solutions under exposure to 900 MHz microwaves and bioprotective effectiveness of sugars and salt solutions. Spectrosc. Letters: Int. J. Rapid Commun. 48:741–747. doi 10.1080/00387010.2015.1011278.
  • Calabrò, E., and Magazù, S. (2012c). Electromagnetic Fields Effects on the Secondary Structure of Lysozyme and Bioprotective Effectiveness of Trehalose. Adv. Phys. Chem 2012. Article ID 970369. 6 pages.
  • Calabrò, E., and Magazù, S. (2013a). Unfolding and aggregation of myoglobin can be induced by three hours exposure to mobile phone microwaves: A FTIR spectroscopy study. Spectrosc. Letters: Int. J. Rapid Commun. 46:583–589. doi 10.1080/00387010.2013.771274.
  • Calabrò, E., and Magazù, S. (2013b). Demicellization of polyethylene oxide in water solution under static magnetic field exposure studied by FTIR spectroscopy. Adv. Phys. Chem. 2013. Article ID 485865. 8 pages.
  • Calabrò, E., and Magazù, S. (2014a). Unfolding-induced in haemoglobin by exposure to electromagnetic fields: A FTIR spectroscopy study. Oriental J. Chem. 30:31–35. doi 10.13005/ojc.
  • Calabrò, E., and Magazù, S. (2014b). Non-thermal effects of microwave oven heating on ground beef meat studied in the mid-infrared region by FTIR spectroscopy. Spectrosc. Letters: Int. J. Rapid Commun. 47:649–656. doi 10.1080/00387010.2013.828313.
  • Calabrò, E., and Magazù, S. (2016). Parallel β-sheet vibration band increases with proteins dipole moment under exposure to 1765 MHz microwaves. Bioelectromagnetics 37:99–107. doi 10.1002/bem.21956.
  • Calabrò, E., and Magazù, S. (2017a). The α-helix alignment of proteins in water solution towards a high frequency electromagnetic field: A FTIR spectroscopy study. Electromagn Biol. Med. 36:279–288. doi 10.1080/15368378.2017.1328691.
  • Calabrò, E., and Magazù, S. (2017b). Effects of the addition of sodium chloride to a tetrameric protein in water solution during exposure to high frequency electromagnetic field. Open. Biotechnol. J. 11:72–80. doi 10.2174/1874070701711010072.
  • Calabrò, E., and Magazù, S. (2017c). Experimental verification of the far-field approximation for a mobile phone antenna. J. Electromagn. Waves Appl. 31:1421–1433. doi 10.1080/09205071.2017.1348999.
  • Calabrò, E., and Magazù, S. (2018a). Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution. Phys. Lett. 382:1389–1394. doi 10.1016/j.physleta.2018.03.038.
  • Calabrò E., and Magazù S. (2018b). Non-Resonant Frequencies of Electromagnetic Fields in α-Helices Cellular Membrane Channels. Open Biotech. J. 12:86-94. doi:10.2174/1874070701812010086.
  • Calabrò, E., Magazù, S., and Campo, S. (2012b). Microwave-induced increase of amide I and amide II vibration bands and modulating functions of sodium-chloride, sucrose and trehalose aqueous solutions: The case study of haemoglobin. Res. J. Chem. Environ. 16:59–67.
  • Challis, L. J. (2005). Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics 26:S98–S106. doi 10.1002/(ISSN)1521-186X.
  • Chernet, B. T., and Levin, M. (2013). Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis. Model. Mech. 6:595–607. doi 10.1242/dmm.010835.
  • Chung, S.-H., and Kuyucak, S. (2002). Recent advances in ion channel research. Biochim. Biophys. Acta 1565:267–286.
  • Cleary, S. F., Liu, L. M., and Garber, F. (1985). Erythrocyte hemolysis by radiofrequency fields. Bioelectromagnetics 6:313–322. doi 10.1002/bem.2250060311.
  • Commission, E. (2006). Possible Effects of Electromagnetic Fields (EMF) on Human Health, Scientific Committee on Emerging and Newly Identified Health Risks on Human Health. Brussels. Belgium: European Commission. 1–58.
  • Cone, Jr., C. D., and Tongier, Jr., M. (1971). Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology 25:168–182. doi 10.1159/000224567.
  • Costa, F. P., De Oliveira, A. C., Meirelles, R., et al. (2011). Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br. J. Cancer 105:640–648. doi 10.1038/bjc.2011.292.
  • Diem, E., Schwarz, C., Adlkofer, F., et al. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat. Res. 583:178–183. doi 10.1016/j.mrgentox.2005.03.006.
  • Djamgoz, M. B., and Onkal, R. (2013). Persistent current blockers of voltage-gated sodium channels: A clinical opportunity for controlling metastatic disease. Recent Patents Anticancer Drug Discov. 8:66–84. doi 10.2174/1574892811308010066.
  • Edwards, G. S., Davis, C. C., Saffer, J. D., and Swicord, M. L. (1984). Resonant absorption of DNA molecules. Phys. Rev. Lett. 53:1284–1287. doi 10.1103/PhysRevLett.53.1284.
  • El Hachmane, M.-F., Rees, K. A., Veale, E. L., et al. (2014). Enhancement of TWIK-related Acid-Sensitive Potassium Channel 3 (TASK3) Two-Pore Domain Potassium Channel Activity by Tumor Necrosis Factor α. J. Biol. Chem. 289(3):1388–1401. doi:10.1074/jbc.M113.500033.
  • Ellis, R. J., and Hartl, F. U. (1992). Principles of protein folding in the cellular environment. Curr. Opin. Struct. Biol. 9:102–110. doi 10.1016/S0959-440X(99)80013-X.
  • Feria Bourrellier, A. B., Valot, B., Guillot, A., et al. (2010). Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc. Natl. Acad. Sci. USA 107:502–507. doi 10.1073/pnas.0910097107.
  • Fritze, K., Sommer, C., Schmitz, B., et al. (1997). Effect of Global System for Mobile Communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathol. 94:465–470. doi 10.1007/s004010050734.
  • Fröhlich, H. (1980). The biological effects of microwaves and related questions. Adv. Electronics . Phys. 53:85–152.
  • Garaj-Vrhovac, V., Horvat, D., and Koren, Z. (1990). The effect of microwave radiation on the cell genome. Mutat. Res. 243:87–93. doi 10.1016/0165-7992(90)90028-I.
  • Gething, M. J., and Sambrook, J. (1992). Protein folding in the cell. Nature 355:33–45.
  • Griffin, J. L., and Ferris, C. D. (1970). Pearl chain formation across radio frequency fields. Nature 226:152–154. doi 10.1038/226152a0.
  • Gross, A., Columbus, L., Hideg, K., et al. (1999). Structure of the KcsA potassium channel from Streptomyces lividans: A site-directed spin labeling study of the second transmembrane segment. Biochemistry 38:10324–10335. doi 10.1021/bi990856k.
  • Grundler, W., and Keilman, F. (1983). Sharp resonances in yeast growth from non-thermal sensitivity to microwaves. Phys. Rev. Lett. 51:1214–1216. doi 10.1103/PhysRevLett.51.1214.
  • Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100:57–70. doi 10.1016/S0092-8674(00)81683-9.
  • Hays, R. M., Franki, N., and Soberman, R. (1971). Activation energy for water diffusion across the toad bladder: Evidence against the pore enlargement hypothesis. J. Clin. Invest. 50:1016–1018. doi 10.1172/JCI106572.
  • Hille, B. (2001). Ion Channels of Excitable Membranes. 3rd Ed. Sunderland, Mass: Sinauer Associates.
  • Holt, A., Koehorst, R. B. M., Rutters-Meijneke, T., et al. (2009). Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy. Biophys. J. 97:2258–2266. doi 10.1016/j.bpj.2009.04.030.
  • Horn, R., Roux, B., and Aqvist, J. (2014). Permeation redux: Thermodynamics and kinetics of ion movement through potassium channels. Biophys. J. 106:1859–1863. doi 10.1016/j.bpj.2014.03.039.
  • Hu, C. J., and Barnes, F. S. (1975). A simplified theory of pearl chain effects. Radiat Environ Biophys. 12:71–76.
  • Hyland, G. J. (1998). Non-thermal bioeffects induced by low-intensity microwave irradiation of living systems. Eng. Sci. Educ. J. 7:261–269. doi 10.1049/esej:19980606.
  • ICNIRP. (1998). For limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
  • ICNIRP. (2009). On the guidelines for limiting exposure to time‐varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 97:257–258. doi 10.1097/HP.0b013e3181aff9db.
  • Independent Expert Group on Mobile Phones. (2000). Mobile phones and health. Report of an independent expert group on mobile phones. Available at. http://www.iegmp.org.uk/.
  • Ismail, A. A., Mantch, H. H., and Wong, P. T. T. (1992). Aggregation of chymotrypsinogen: Portrait by infrared spectroscopy. Biochim Biophys. Acta. 1121:183–188. doi 10.1016/0167-4838(92)90353-F.
  • Kirson, E. D., Dbaly, V., Tovarys, F., et al. (2007). Alternating electric fields arrest cell proliferation in animal tumour models and human brain tumour. Proc. Natl. Acad. Sci. U.S.A. 104:10152–10157. doi 10.1073/pnas.0702916104.
  • Kirson, E. D., Gurvich, Z., Schneiderman, R., et al. (2004). Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64:3288–3295.
  • Lang, F., and Stournaras, C. (2014). Ion channels in cancer: Future perspectives and clinical potential. Phil. Trans. R. Soc. B 369:20130108. doi 10.1098/rstb.2013.0108.
  • Leanza, L., Managò, A., Zoratti, M., et al. (2016). Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochim. Biophys. Acta. 1863:1385–1397. doi 10.1016/j.bbadis.2016.10.028.
  • Lefevre, T., and Subirade, M. (2000). Molecular differences in the formation and structure of fine-stranded and particulate β-lactglobulin gels. Biopolymers. 54:578–586. doi 10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2.
  • Levin, M. (2007). Large-scale biophysics: Ion flows and regeneration. Trends Cell Biol. 17:261–270. doi 10.1016/j.tcb.2007.04.007.
  • Levin, M. (2012). Molecular bioelectricity in developmental biology: New tools and recent discoveries: Control of cell behavior and pattern formation by transmembrane potential gradients. Bioessays 34:205–217. doi 10.1002/bies.201100136.
  • Lin, J. C. (2000). Mechanisms of field coupling into biological systems at ELF and RF frequencies. In: Advances in Electromagnetic Fields in Living Systems. New York: Kluwer/ Plenum. Vol. 3 1–38.
  • Maes, A., Collier, M., Van Gorp, U., et al. (1997). Cytogenetic effects of 935.2MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat. Res. 393:151–156. doi 10.1016/S1383-5718(97)00100-9.
  • Magazù, S., Calabrò, E., and Campo, S. (2010). FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J. Phys. Chem. B 114:12144–12149. doi 10.1021/jp104226p.
  • Magazù, S., Calabrò, E., Campo, S., and Interdonato, S. (2012). New insights into bioprotective effectiveness of disaccharides: A FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields. J. Biol. Phys. 38:61–74. doi 10.1021/jp904153z.
  • McCaig, C. D., Rajnicek, A. M., Song, B., and Zhao, M. (2005). Controlling cell behavior electrically: Current views and future potential. Physiol. Rev. 85:943–978.
  • Michaelkson, S. M., and Lin, J. C. (1987). Biological Effects and Health Implications of Radio Frequency Radiation. New York: Plenum.
  • Miles, A. J., and Wallace, B. A. (2016). Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 45:4859–4872. doi 10.1039/c5cs00084j.
  • Nguyen, K. T., Le Clair, S. V., Ye, S., and Chen, Z. (2009). Orientation determination of protein helical secondary structure using linear and nonlinear vibrational spectroscopy. J. Phys. Chem. B. 113:12169–12180. doi 10.1021/jp904153z.
  • Oosterwijk, E., and Gillies, R. J. (2014). Targeting ion transport in cancer. Phil. Trans. R. Soc. B 369:20130107. doi 10.1098/rstb.2013.0107.
  • Orel, V. E., Yu., K., Satz, I., et al. (2004). Effects of mechanochemically activated doxorubicin and 40 MHz frequency irradiation on human A-549 lung carcinoma cells. Exp. Oncol. 26:271–277.
  • Pakhomova, O. N., Gregory, B., Semenov, I., and Pakhomov, A. G. (2014). Calcium-mediated pore expansion and cell death following nanoelectroporation. Biochim. Biophys. Acta 1838:2547–2554. doi 10.1016/j.bbamem.2014.06.015.
  • Pang, Y. Y., Wai, Y., and Chun, A. (2006). Hemoglobinuria during laparoscopic radiofrequency ablation of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 21:1355–1358. doi 10.1111/j.1440-1746.2006.04125.x.
  • Pardo, L. A., Contreras-Jurado, C., Zientkowska, M., et al. (2005). Role of voltage-gated potassium channels in cancer. J. Membr. Biol. 205:115–124. doi 10.1007/s00232-005-0776-1.
  • Perozo, E., Cortes, D. M., and Cuello, L. G. (1999). Structural rearrangements underlying K+-channel activation gating. Science 285:73–78. doi 10.1126/science.285.5424.73.
  • Peruzzo, R., Biasutto, L., Szabò, I., and Leanza, L. (2016). Impact of intracellular ion channels on cancer development and progression. Eur. Biophys. J. 45:685–707.
  • Preto, J., and Pettini, M. (2013). Resonant long-range interactions between polar macromolecules. Phys. Lett. 377:587–591. doi 10.1016/j.physleta.2012.12.034.
  • Rao, V. R., Perez-Neut, M., Kaja, S., and Gentile, S. (2015). Voltage-gated ion channels in cancer cell proliferation. Cancers 7:849–875. doi 10.3390/cancers7020813.
  • Ronchetto, F., Barone, D., Cintorino, M., et al. (2016). Natural frequency of cancer cells as a starting point in cancer treatment. Curr. Sci. 110:1828–1832. doi 10.18520/cs/v110/i9/1828-1832.
  • Salford, L. G., Brun, A. E., Eberhardt, J. L., et al. (2003). Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111:881–883. doi 10.1289/ehp.6039.
  • Schwan, H. P., and Sher, L. D. (1969). Alternating−current field−induced forces and their biological implications. J. Electrochem. Soc. 116: 22C.
  • Sersa, G., Cemazar, M., and Miklavcic, D. (2003). Tumor blood flow modifying effects of electrochemotherapy: A potential vascular targeted mechanism. Radiol. Oncol. 37:43–48.
  • Sher, L. D. (1968). Dielectrophoresis in lossy dielectric media. Nature 220:695–696. doi 10.1038/220695a0.
  • Shrivastava, I. H., and Sansom, M. S. (2000). Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phos- pholipid bilayer. Biophys. J. 78:557–570. doi 10.1016/S0006-3495(00)76616-1.
  • Stewart, W. (2000). Mobile Phones and Health, Independent Expert Group on Mobile Phones. Chilton, Didcot: National Radiological Protection Board.
  • Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. Chichester, UK: Wiley & Sons.
  • Surewicz, W. K., and Mantsch, H. H. (1988). New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta 952:115–130. doi 10.1016/0167-4838(88)90107-0.
  • Susi, H., and Byler, D. M. (1986). Resolution-enhanced fourier transform infrared spectroscopy of enzymes. Meth. Enzymol. 130:290−311.
  • Szabo, I., and Zoratti, M. (2014). Mitochondrial channels: Ion fluxes and more. Physiol. Rev. 94:519–608.
  • Takashima, S., and Schwan, H. P. (1985). Alignment of microscopic particles in electric fields and its biological implications. Biophys. J. 47:513–518. doi 10.1016/S0006-3495(85)83945-X.
  • Tice, R. R., Hook, G. G., Donner, M., et al. (2002). Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 23:113–126.
  • Tofani, S. (2004). Extremely low frequency-modulated static magnetic fields to treat cancer: A pilot study on patients with advanced neoplasm to assess safety and acute toxicity. Bioelectromagnetics 25:563–571. doi 10.1002/bem.20029.
  • Tore, F., Dulou, P. E., Haro, E., et al. (2001). Two-hour exposure to 2 W/kg, 900MHz GSM microwaves induces plasma protein extravasation in rat brain. In: Proceedings from the 5th International Congress of the European Bioelectromagnetics Association, Helsinki, Finland, Sept. Vol. 6:43–45.
  • Tsui, S. L., Lee, A. K., Lui, S. K., et al. (2003). Acute intraoperative hemolysis and hemoglobinuria during radiofrequency ablation of hepatocellular carcinoma. Hepatogastroenterology 50:526–529.
  • Turner, K. L., and Sontheimer, H. (2014). Cl2 and Kþ channels and their role in primary brain tumour biology. Phil. Trans. R. Soc. B 369:20130095. doi 10.1098/rstb.2013.0095.
  • Ulmschneider, M. B., Sansom, M. S. P., and Di Nola, A. (2006). Evaluating tilt angles of membrane-associated helices: Comparison of computational and NMR techniques. Biophys. J. 90:1650–1660. doi 10.1529/biophysj.105.065367.
  • Wee, H., and Voloshin, A. (2012). Modal Analysis of a Spreading Osteoblast Cell in Culturing. 38th Annual Northeast Bioengineering Conference (NEBEC 2012), 16-18 March 2012. Philadelphia, Pennsylvania: USA.
  • Welling, L. W., Evan, A. P., and Welling, D. J. (1981). Shape of cells and extracellular channels in rabbit cortical collecting ducts. Kidney Int. 20:211–222.
  • WHO (World Health Organization). (1993). Electromagnetic Fields (300 Hz to 300 GHz). Environ. Health Criteria 137:1–290.
  • Woody, R. W., and Tinoco, I. (1967). Optical rotation of oriented helices. III. Calculation of the rotatory dispersion and circular dichroism of the alpha- and 310-helix. J. Chem. Phys 46:4927–4945.
  • Yang, M., and Brackenbury, W. J. (2013). Membrane potential and cancer progression. Front. Physiol. 4:185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.