300
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells

ORCID Icon, , , &
Pages 149-157 | Received 08 Oct 2018, Accepted 02 Feb 2019, Published online: 20 Mar 2019

References

  • Berg, G. (1999). Problems of weak electromagnetic field effects in cell biology 1. Bioelectrochem Bioenerg. 48:355–360.
  • Bootman, M. D., Lipp, P., Berridge, M. J. (2001). The organisation and functions of local Ca2+ signals. J. Cell. Sci.. 114:2213–2222.
  • Brighton, C. T., Wang, W., Seldes, R., et al. (2001). Signal transduction in electrically stimulated bone cells. JBJS. 83:1514–1523. doi:10.2106/00004623-200110000-00009.
  • Buckner, C. A., Buckner, A. L., Koren, S. A., et al. (2015). Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS One. 10:e0124136. doi:10.1371/journal.pone.0124136.
  • Chen, Y. C., Chen, C. C., Tu, W., et al. (2010). Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells. J. Micromech. Microeng.. 20:125023. doi:10.1088/0960-1317/20/12/125023.
  • Ćosić, I., Cvetković, D., Fang, Q., et al. (2006). Human electrophysiological signal responses to ELF Schumann resonance and artificial electromagnetic fields. FME Trans.. 34:93–103.
  • Destefanis, M., Viano, M., Leo, C., et al. (2015). Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. Int. J. Radiat. Biol. 91:964–972. doi:10.3109/09553002.2015.1101648.
  • Foletti, A., Ledda, M., De Carlo, F., et al. (2010). Calcium ion cyclotron resonance (ICR), 7.0 Hz, 9.2 μT magnetic field exposure initiates differentiation of pituitary corticotrope-derived AtT20 D16V cells. Electromagn. Biol. Med. 29:63–71. doi:10.3109/15368378.2010.482480.
  • Füllekrug, M. (1995). Schumann resonances in magnetic field components. J. Atmos. Sol. Terr. Phys. 57:479–484. doi 10.1016/0021-9169(94)00075-Y.
  • Huang, L., Dong, L., Chen, Y., et al. (2006). Effects of sinusoidal magnetic field observed on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines. Electromagn. Biol. Med. 25:113–126. doi:10.1080/15368370600719067.
  • Li, X., Zhang, M., Bai, L., et al. (2012). Effects of 50 Hz pulsed electromagnetic fields on the growth and cell cycle arrest of mesenchymal stem cells: an in vitro study. Electromagn. Biol. Med. 31. doi:10.3109/15368378.2012.662194.
  • Lindström, E., Lindström, P., Berglund, A., et al. (1995). Intracellular calcium oscillations in a T‐cell line after exposure to extremely‐low‐frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics. 16:41–47.
  • Lisi, A., Ledda, M., De Carlo, F., et al. (2008a). Ion cyclotron resonance as a tool in regenerative medicine. Electromagn. Biol. Med. 27:127–133. doi:10.1080/15368370802072117.
  • Lisi, A., Ledda, M., De Carlo, F., et al. (2008b). Calcium ion cyclotron resonance (ICR) transfers information to living systems: effects on human epithelial cell differentiation. Electromagn. Biol. Med. 27:230–240. doi:10.1080/15368370802269135.
  • Lyle, D. B., Wang, X., Ayotte, R. D., et al. (1991). Calcium uptake by leukemic and normal T‐lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics. 12:145–156.
  • Martirosyan, V., Baghdasaryan, N., Ayrapetyan, S. (2013). Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12. Electromagn. Biol. Med. 32:291–300. doi 10.3109/15368378.2012.712587.
  • Mellstrom, B., Savignac, M., Gomez-Villafuertes, R., et al. (2008). Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol. Rev.. 88:421–449. doi:10.1152/physrev.00041.2005.
  • Ming, Y., Min, Y., Zhen-Yu, Z., et al. (2015). Biological effects research of extremely low frequency electromagnetic field on osteosarcoma cell in vitro. Progn. Mod. Biomed. 15:260.
  • Nie, Y., Du, L., Mou, Y., et al. (2013). Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation. BMC Cancer. 13:582. doi:10.1186/1471-2407-13-582.
  • Novikov, G. V., Novikov, V. V., Fesenko, E. E. (2009). Effect of weak combined static and low-frequency alternating magnetic fields on the Ehrlich ascites carcinoma in mice. Biophysics. 54:741–747. doi 10.1134/S0006350909060141.
  • Pall, M. L. (2013). Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 17:958–965. doi 10.1111/jcmm.12088.
  • Panagopoulos, D. J., Karabarbounis, A., Margaritis, L. H. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102.
  • Prevarskaya, N., Ouadid-Ahidouch, H., Skryma, R., et al. (2014). Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos. Trans. R. Soc. B. 369:20130097. doi:10.1098/rstb.2013.0097.
  • Roderick, H. L., Cook, S. J. (2008). Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer. 8:361. doi 10.1038/nrc2374.
  • Ross, C. L., Siriwardane, M., Almeida-Porada, G., et al. (2015). The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 15:96–108. doi:10.1016/j.scr.2015.04.009.
  • Simko, M., Kriehuber, R., Weiss, D. G., et al. (1998). Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics. 19:85–91.
  • Tiwari, P. K. (2015). Simulation and mathematical analyses of AC electric field driven apoptosis via microtubule disintegration. Jpn. J. Appl. Phys. 54:097301. doi 10.7567/JJAP.54.097301.
  • Tsai, M. T., Li, W. J., Tuan, R. S., et al. (2009). Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J. Orthopaed. Res. 27:1169–1174. doi:10.1002/jor.20862.
  • Vijayalaxmi, Prihoda, T. J. (2009). Genetic damage in mammalian somatic cells exposed to extremely low frequency electro-magnetic fields: a meta-analysis of data from 87 publications (1990–2007). Int. J. Radiat. Biol. 85:196–213. doi 10.1080/09553000902748575.
  • Wang, T., Nie, Y., Zhao, S., et al. (2011). Involvement of midkine expression in the inhibitory effects of low‐frequency magnetic fields on cancer cells. Bioelectromagnetics. 32:443–452. doi:10.1002/bem.20654.
  • Xi, G., Song, Q., Yang, C. (2003). Research progress about effect of abnormal electromagnetic field on biological system. Chin. J. Appl. Environ. Biol. 9:203–206.
  • Yan, J., Dong, L., Zhang, B., et al. (2010). Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn. Biol. Med. 29:165–176. doi:10.3109/01676830.2010.505490.
  • Zablotskii, V., Polyakova, T., Lunov, O., et al. (2016). How a high-gradient magnetic field could affect cell life. Sci. Rep. 6:37407. doi:10.1038/srep37407.
  • Zhadin, M. N. (2001). Review of Russian literature on biological action of DC and low‐frequency AC magnetic fields. Bioelectromagnetics. 22:27–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.