285
Views
8
CrossRef citations to date
0
Altmetric
Articles

Enhancement of natural killer cell cytotoxicity by using static magnetic field to increase their viability

, , , , &
Pages 131-142 | Received 14 Oct 2018, Accepted 02 Feb 2019, Published online: 19 Mar 2019

References

  • Aldinucci, C., Garcia, J. B., Palmi, M., et al. 2003. The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics. 24:109–117. doi:10.1002/bem.10071.
  • Atkinson, E. A., Gerrard, J. M., Hildes, G. E., et al. 1990. Studies of the mechanism of natural killer (NK) degranulation and cytotoxicity. J. Leukoc. Biol. 47:39–48.
  • Berk, S. G., Srikanth, S., Mahajan, S. M., et al. 1997. Static uniform magnetic fields and amoebae. Bioelectromagnetics. 18:81–84.
  • Busche, A., Schmitz, S., Fleige, H., et al. 2011. Genetic labeling reveals altered turnover and stability of innate lymphocytes in latent mouse cytomegalovirus infection. J. Immunol. 186:2918–2925. doi:10.4049/jimmunol.1003232.
  • Cacalano, N. A. 2016. Regulation of natural killer cell function by STAT3. Front Microbiol. 7:128.
  • Chionna, A., Dwikat, M., Panzarini, E., et al. 2003. Cells shape and plasma membrane alternations after static magnetic fields expose. Eur. J. Histochem. 47:299–308.
  • Chiu, K. H., Ou, K. L., Lee, S. Y., et al. 2007. Static magnetic fields promote osteoblast-like cells differentiation via increasing the membrane rigidity. Ann. Biomed. Eng. 35:1932–1939. doi:10.1007/s10439-007-9370-2.
  • Chuo, W., Ma, T., Saito, T., et al. 2013. A preliminary study of the effect of static magnetic field acting on rat bone marrow mesenchymal stem cells during osteogenic differentiation in vitro. J. Hard. Tissue Biol. 22:227–232. doi:10.2485/jhtb.22.227.
  • Dini, L., Abbro, L. 2005. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron. 36:195–217. doi:10.1016/j.micron.2004.12.009.
  • Fanelli, C., Coppola, S., Barone, R., et al. 1999. Magnetic fields increase cell survival by inhibiting apoptosis via mofulation of Ca2+ influx. FASEB J. 13:95–102.
  • Gotthardt, D., Sexl, V. 2016. STATs in NK-cells: The good, the bad, and the ugly. Front Immunol. 7:694.
  • Huang, H. M., Lee, S. Y., Yao, W. C., et al. 2006. Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clin. Orthop. Rel. Res. 447:201–208. doi:10.1097/01.blo.0000203464.35561.be.
  • Iyengar, R., Handgretinger, R., Barbarin-Dorner, A., et al. 2003. Purification of human natural killer cells using a clinical-scale immunomagnetic method. Cytotherapy. 5:479–484. doi:10.1080/14653240310003558.
  • Jamieson, A. M., Isnard, P., Dorfman, J. R., et al. 2004. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol. 172:864–870.
  • Javani Jouni, F., Abdolmaleki, P., Movahedin, M. 2013. Investigation on the effect of static magnetic field up to 15 mT on the viability and proliferation rate of rat bone marrow stem cells. In Vitro Cell Dev. Biol.-Animal. 49:212–219. doi:10.1007/s11626-013-9580-x.
  • Jen, E. Y., Poindexter, N. J., Farnsworth, E. S., et al. 2012. IL-2 regulates the expression of the tumor suppressor IL-24 in melanoma cells. Melanoma Res. 22:19–29. doi:10.1097/CMR.0b013e32834d2506.
  • Kalina, U., Kauschat, D., Koyama, N., et al. 2000. IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J. Immunol. 165:1307–1313.
  • Karrek, K., Ljunggren, H. G., Piontek, G., et al. 1986. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature. 319:675–678. doi:10.1038/319675a0.
  • Kim, E. C., Leesungbok, R., Lee, S. W., et al. 2015. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics. 36:267–276. doi:10.1002/bem.21903.
  • Kim, E. C., Park, J., Kwon, I. L., et al. 2017. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells. J. Periodontal. Implant Sci. 47:273–291. doi:10.5051/jpis.2017.47.5.273.
  • Kim, H. J., Chang, I. T., Heo, S. J., et al. 2005. Effect of magnetic field on the fibronectin adsorption, cell attachment and proliferation on titanium surface. Clin. Orthop. Rel. Res. 16:557–562.
  • Klingemann, H. G., Martinson, J. 2004. Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy. 6:15–22. doi:10.1080/14653240310004548.
  • Koehl, U., Esser, R., Zimmermann, S., et al. 2005. Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children. Klin Padiatr. 217:345–350. doi:10.1055/s-2005-872520.
  • Kotani, H., Kawaguchi, H., Shimoaka, T., et al. 2002. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J. Bone Miner. Res. 17:1814–1821. doi:10.1359/jbmr.2002.17.10.1814.
  • Lai, W. Y., Huang, Y. C., Chang, W. J., et al. 2015. Static magnetic field attenuates lipopolysaccharide-induced multiple organ failure: A histopathologic study in mice. Int. J. Radiat. Biol. 91:135–141. doi:10.3109/09553002.2015.959669.
  • Lew, W. Z., Huang, Y. C., Huang, K. Y., et al. 2018. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J. Tissue Eng. Regen. Med. 12:19–29. doi:10.1002/term.2333.
  • Lin, C. T., Lee, S. Y., Chen, C. Y., et al. 2008. Long-term continuous exposure to static magnetic field reduces lipopolysaccharide-induced cytotoxicity of fibroblasts. Int. J. Radiat. Biol. 84:219–226. doi:10.1080/09553000801902158.
  • Ljunggren, H. G., Karre, K. 1985. Host-resistance directed selectively against H-2-deficent lymphoma variants – Analysis of the mechanism. J. Exp. Med. 162:1745–1759.
  • Marędziak, M., Tomaszewski, K., Polinceusz, P., et al. 2017. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Electromagn. Biol. Med. 36:45–54. doi:10.3109/15368378.2016.1149860.
  • Martino, C. F., Perea, H., Hopfner, U., et al. 2010. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 31:296–301. doi:10.1002/bem.20565.
  • Miller, J. S., Soignier, Y., Panoskaltsis-Mortari, A., et al. 2005. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 105:3051–3057. doi:10.1182/blood-2004-07-2974.
  • Miyakoshi, J. 2005. Effects of static magnetic fields at the cellular level. Prog. Biophys. Mol. Biol. 87:213–223. doi:10.1016/j.pbiomolbio.2004.08.008.
  • Park, K. H., Park, H., Kim, M., et al. 2013. Evaluation of NK cell function by flowcytometric measurement and impedance based assay using real-time cell electronic sensing system. BioMed. Res. Int. Article ID 210726. doi:10.1155/2013/210726.
  • Potenza, L., Martinelli, C., Polidori, E., et al. 2010. Effects of a 300 mT static magnetic field on human umbilical vein endothelial cells. Bioelectromagnetics. 31:630–639. doi:10.1002/bem.20591.
  • Prasad, N., Lotzová, E., Thornby, J. I., et al. 1987. Effects of MR imaging on murine natural killer cell cytotoxicity. AJR Am. J. Roentgenol. 148:415–417. doi:10.2214/ajr.148.2.415.
  • Prina-Mello, A., Campbell, V., Coey, J. M. D. 2005. Static magnetic field on cells: A possible road to cell differentiation. NSTI-Nanotech. 1:96–99.
  • Roozemond, R. C., Bonavid, B. 1985. Effect of altered membrane fluidity on NK cell-mediated cytotoxicity. I. Selective inhibition of the recognition or post recognition events in the cytolytic pathway of NK cells. J. Immunol. 134:2209–2214.
  • Roozemond, R. C., Halperin, M., Das, P. K. 1985. Inhibition of natural killer cell-mediated cytotoxicity by lipids extracted from Mycobacterium bovis BCG. Clin. Exp. Immunol. 62:482–490.
  • Roozemond, R. C., Mevissen, M., Urli, D. C., et al. 1987. Effect of altered membrane structure on NK cell-mediated cytotoxicity. III. Decreased susceptibility to natural killer cytotoxic factor (NKCF) and suppression of NKCF release by membrane rigidification. J. Immunol. 139:1739–1746.
  • Rosen, A. D. 2003. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39:163–173. doi:10.1385/CBB:39:2:163.
  • Rosen, A. D. 2010. Studies on the effect of static magnetic fields on biological systems. PIERS Online. 6:133–136. doi:10.2529/PIERS090529114533.
  • Ruggeri, L., Mancusi, A., Capanni, M., et al. 2005. Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr. Opin. Immunol. 17:211–217. doi:10.1016/j.coi.2005.01.007.
  • Sakurai, H., Okuno, K., Kubo, A., et al. 1999. Effect of a 7-tesla homogeneous magnetic field on mammalian cells. Bioelectrochem. Bioenerg. 49:57–63.
  • Salerno, S., Lo Casto, A., Caccamo, N., et al. 1999. Static magnetic fields generated by a 0.5 T MRI unit affects in vitro expression of activation markers and interleukin release in human peripheral blood mononuclear cells (PBMC). Int. J. Radiat. Biol. 75:457–463.
  • Shiozawa, M., Chang, C. H., Huang, Y. C., et al. 2018. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 19:27. doi:10.1186/s12865-018-0262-z.
  • Smyth, M. J., Cretney, E., Kelly, J. M., et al. 2005. Activation of NK cell cytotoxicity. Molec. Immun. 42:501–510. doi:10.1016/j.molimm.2004.07.034.
  • Smyth, M. J., Hayakawa, Y., Takeda, K., et al. 2002. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat. Rev. Cancer. 2:850–861. doi:10.1038/nrc928.
  • Sullivan, K., Balin, A. K., Allen, R. G. 2011. Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics. 32:140–147. doi:10.1002/bem.20624.
  • Tenuzzo, B., Chionna, A., Panzarini, E., et al. 2006. Biological effects of 6 mT static magnetic fields: a comparative study in differntt cell types. Bioelectromagnetics. 27:560–577.
  • Vivier, E., Raulet, D. H., Moretta, A., et al. 2011. Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–49. doi:10.1126/science.1198687.
  • Wang, Z., Sarje, A., Che, P. L., et al. 2009. Moderate strength (0.23–0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics. 10:1–13. doi:10.1186/1471-2164-10-1.
  • Wang, Z., Zhang, Z., Zhang, H., et al. 2006. Application of serum-free culture medium for preparation of A-NK cells. Cell. Mol. Immunol. 3:391–395.
  • Weinberger, A., Nyska, A., Giler, S. 1996. Treatment of experimental inflammatory synovitis with continuous magnetic field. Isr. J. Med. Sci. 32:1197–1201.
  • World Health Organization. 2006. Environmental Health Criteria 232- Static Fields. Geneva:WHO Press, World Health Organization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.