123
Views
2
CrossRef citations to date
0
Altmetric
Articles

A modified magnetic resonance wireless power transfer system for capsule endoscopy

, ORCID Icon &
Pages 158-167 | Received 27 Oct 2018, Accepted 03 Mar 2019, Published online: 15 Mar 2019

References

  • Ahn, D., Ghovanloo, M. (2016). Optimal design of wireless power transmission links for millimeter-sized biomedical implants. IEEE Trans. Biomed. Circuits Syst. 10: 125–137. doi 10.1109/TBCAS.2014.2370794.
  • Akkus, O., Oguz, A., Uzunlulu, M., Kizilgul, M. (2012). Evaluation of skin and subcutaneous adipose tissue thickness for optimal insulin injection. J. Diabetes Metab. 3: 216. doi 10.4172/2155-6156.1000216.
  • Balaguru, D., Bhalala, U., Haghighi, M., Norton, K. (2011). Computed tomography scan measurement of abdominal wall thickness for application of near-infrared spectroscopy probes to monitor regional oxygen saturation index of gastrointestinal and renal circulations in children. Crit. Care Med. 12: E145–E148. doi 10.1097/PCC.0b013e3181e8b430.
  • Basar, M. R., Ahmad, M. Y., Cho, J., Ibrahim, F. (2014). Application of wireless power transmission systems in wireless capsule endoscopy: An overview. Sensors. 14: 10929–10951. doi 10.3390/s140610929.
  • Basar, M. R., Ahmad, M. Y., Cho, J., Ibrahim, F. (2018). An improved wearable resonant wireless power transfer system for biomedical capsule endoscope. IEEE Trans. Ind. Electron. 65: 7772–7781. doi 10.1109/TIE.2018.2801781.
  • Dubey, S., Chiao, J.-C. (2016). Power transfer for a flexible gastric stimulator. BiowireleSS2016. 15–17). doi 10.1109/BIOWIRELESS.2016.7445549.
  • Faerber, J., Cummins, G., Pavuluri, S. K., et al. (2017). In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna. IEEE Trans. Biomed. Circuits Syst. 12: 95–105. doi 10.1109/TBCAS.2017.2759254.
  • Fernandez, M., Espinosa, H. G., Thiel, D. V., Arrinda, A. (2017). Wearable slot antennaat 2.45 GHz for off-body radiation: Analysis of efficiency, frequency shift, and body absorption. Bioelectromagn. 39: 25–34. doi 10.1002/bem.22081.
  • ICNIRP. (1998). Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74: 494–522.
  • Karthik, V., Rao, T. R. (2018). SAR investigations on the exposure compliance of Wearable wireless devices using infrared thermography. Bioelectromagn. 39: 451–459. doi 10.1002/bem.22133.
  • Koohestani, M., Zhadobov, M., Ettorre, M. (2017). Design methodology of a printed wpt system for hf-band mid-range applications considering human safety regulations. IEEE Trans. Microw. Theory Tech. 65: 270–279. doi 10.1109/TMTT.2016.2609931.
  • Kurs, A., Karalis, A., Moffatt, R., et al. (2007). Wireless power transfer via strongly coupled magnetic resonance. Science. 317: 83–86. doi 10.1126/science.1143254.
  • Mary, T. A. J., Ravichandran, C. S. (2013). Effect of SAR on human head modeling inside cylindrical enclosures. Electromagn. Biol. Med. 32: 382–389. doi 10.3109/15368378.2012.728551.
  • Mirbozorgi, S. A., Yeon, P., Ghovanloo, M. (2017). Robust wireless power transmission to mm-Sized free-floating distributed implants. IEEE Trans. Biomed. Circuits Syst. 11: 692–702. doi 10.1109/TBCAS.2017.2663358.
  • Montgomery, K. L., Yeh, A. J., Ho, J. S., et al. (2015). Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods. 12: 969–974. doi 10.1038/nmeth.3536.
  • Mutashar, S., Hannan, M. A., Samad, S. A., Hussain, A. (2013). Design of spiral circular coils in wet and dry tissue for bio-implanted micro-system applications. Prog. Electromagn. Res. 32: 181–200. doi 10.2528/PIERM13052707.
  • Mutashar, S., Hannan, M. A., Samad, S. A., Hussain, A. (2014). Analysis and optimization of spiral circular inductive coupling link for bio-implanted applications on air and within human tissue. Sensors. 14: 11522–11541. doi 10.3390/s140711522.
  • Na, K., Jang, H., Ma, H., Bien, F. (2015). Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy. IEEE Trans. Microw. Theory Tech. 63: 295–304. doi 10.1109/TMTT.2014.2365475.
  • Raju, S., Wu, R., Chan, M., Yue, C. P. (2014). Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Trans. Power Electron. 29: 481–490. doi 10.1109/TPEL.2013.2253334.
  • Rao, S., Dubey, S., Deb, S., et al. (2014). Wireless gastric stimulators. Texas Symposium on Wireless and Microwave Circuits and Systems, Wmcs. 1–4. doi: 10.1109/WMCaS.2014.7015875.
  • Rolfe, E. D. L., Sleigh, A., Finucane, F., et al. (2010). Ultrasound measurements of visceraland subcutaneous abdominal thickness to predict abdominal adiposity among older men and women. Obesity. 18: 625–631. doi 10.1038/oby.2009.309.
  • Rosaline, I., Singaravelu, R. (2016). SAR reduction using a SRR superstrate for a dual-band antenna. Electromagn. Biol. Med. 36: 39–44. doi 10.3109/15368378.2016.1144065.
  • Stoecklin, S., Yousaf, A., Volk, T., Reindl, L. (2016). Efficient wireless powering of biomedical sensor systems for multichannel brain implants. IEEE Trans. Instrum. Meas. Technol. 65: 754–764. doi 10.1109/TIM.2015.2482278.
  • Sun, T. J., Xie, X., Li, G. L., et al. (2012). A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection. IEEE Trans. Biomed. Eng. 59: 3247–3254. doi 10.1109/TBME.2012.2206809.
  • Sun, T. J., Xie, X., Wang, Z. H. (2013). Wireless Power Transfer for Medical Microsystems. 7–62. New York: Springer.
  • Swain, P. (2003). Wireless capsule endoscopy. Gut. 52: 48–50. doi 10.1136/gut.52.suppl_4.iv48.
  • Zargham, M., Gulak, P. G. (2015). Fully integrated on-chip coil in 0.13 μm CMOS for wireless power transfer through biological media. IEEE Trans. Biomed. Circuits Syst. 9: 259–271. doi 10.1109/TBCAS.2014.2328318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.