476
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effects of a brain tumor in a dispersive human head on SAR and temperature rise distributions due to RF sources at 4G and 5G frequencies

Pages 168-176 | Received 28 Nov 2018, Accepted 18 Feb 2019, Published online: 20 Mar 2019

References

  • Bernardi, P., Cavagnaro, M., Pisa, S., Piuzzi, E. (July 2000). Specific absorption rate and temperature increases in the head of a cellular-phone user. IEEE. Trans. Microwave. Theory. Tech. 48:1118–1126. doi 10.1109/22.848494.
  • Bernardi, P., Cavagnaro, M., Pisa, S., Piuzzi, E. (Dec 2001). Power absorption and temperature elevations induced in the human head by a dual-band monopole-helix antenna phone. IEEE. Trans. Microwave. Theory. Tech. 49:2539–2546. doi 10.1109/22.971647.
  • Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A. (Jan 2018). Brain tumor temperature effect extraction from MRI imaging using bioheat equation. J. Therm. Biol. 71:52–61. doi 10.1016/j.jtherbio.2017.10.014.
  • Cardis, E., Deltour, I., Mann, S., Moissonnier, M., et al. (2008). Distribution of RF energy emitted by mobile phones in anatomical structures of the brain. Phys. Med. Biol. 53:2771–2783. doi 10.1088/0031-9155/53/11/001.
  • Cavagnaro, M., Bernardi, P., Pisa, S., Piuzzi, E. (June 2010). Effect of the presence of a brain tumor on electromagnetic power absorption in the head of a cellular phone user. Microw. Opt. Technol. Lett. 52:1264–1267. doi 10.1002/mop.v52:6.
  • Eleiwa, M. A., Elsherbeni, A. Z. (Nov 2001). Debye constants for biological tissues from 30 Hz to 20 GHz. Aces. J. 16:202–213.
  • Elsherbeni, A. Z., Demir, V. (2016). The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations. 2nd edn, Edison, NJ: ACES Series on Computational Electromagnetics and Engineering, SciTech Publishing, an Imprint of IET.
  • Federal Communications Commission. (1997). Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields. Tech. Rep. Washington, DC: OET Bull. p. 65.
  • Fiala, D., Lomas, K. J., Stohrer, M. (Nov 1999). A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. J. Appl. Physiol. 87:1957–1972. doi 10.1152/jappl.1999.87.5.1957.
  • Fujiwara, O., Yano, M., Wang, J. (1999). FDTD computation of temperature rise inside a realistic head model for 1.5-GHz microwave exposure. Electron. Comm. Jpn. Pt. I. 82:240–247. doi 10.1002/(SICI)1520-6424(199903)82:3<11::AID-ECJA2>3.0.CO;2-L.
  • Gabriel, S., Lau, R. W., Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41:2271–2293.
  • Guyton, A. C., Hall, J. E. (1996). Textbook of Medical Physiology. Philadelphia, PA: W. B. Saunders. chap. 73.
  • Ha, S., Park, S., Kim, E., Jung, K., et al. (2013). Complex rational function for frequency dependent complex permittivity of biological tissues. 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul. pp. 380–382.
  • Hardell, L., Carlberg, M., Hedendahl, L. K. (2018). Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report. Oncology. Lett. 15:7871–7883.
  • Hirata, A. (Feb 2005). Temperature increase in human eyes due to near-field and far-field exposures at 900 MHz, 1.5 GHz, and 1.9 GHz. IEEE. Trans. Electromag. Compat. 47:68–76. doi 10.1109/TEMC.2004.842113.
  • Hirata, A., Morita, M., Shiozawa, T. (Feb 2003). Temperature increase in the human head due to a dipole antenna at microwave frequencies. IEEE Trans. Electromag. Compat. 45:109–116. doi 10.1109/TEMC.2002.808045.
  • Hirata, A., Nagai, T., Koyama, T., Fujiwara, O. (2010). Modeling of ESD-induced ultrawideband noise propagating on the human body. IEEE. Antennas. Wirel. Propag. Lett. 9:1245–1247. doi 10.1109/LAWP.2011.2105457.
  • Hirata, A., Shiozawa, T. (July 2003). Correlation of maximum temperature increase and peak SAR in the human head due to handset antennas. IEEE. Trans. Microw. Theory. Tech. 51:1834–1841. doi 10.1109/TMTT.2003.814314.
  • Ibrahiem, A., Dale, C. (2005). Analysis of the temperature increase linked to the power induced by RF source. Prog. Electromagne. Res. 52:23–46. doi 10.2528/PIER04062501.
  • IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz, in IEEE Std C95.3-2002 (Revision of IEEE Std C95.3-1991), 11 Jan. 2003. doi: 10.1109/IEEESTD.2003.8329043.
  • IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, in IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), 19 April 2006. doi: 10.1109/IEEESTD.2006.99501.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health. Phys. 74:494–522.
  • INTERPHONE Study Group. (2010). Brain tumour risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study. Int. J. Epidemiol. 39:675–694.doi 10.1093/ije/dyq079.
  • Kaburcuk, F., Elsherbeni, A. Z. (April 2018a). Temperature rise and SAR distribution at wide range of frequencies in a human head due to an antenna radiation. Aces. J. 33:367–372.
  • Kaburcuk, F., Elsherbeni, A. Z. (Nov 2018b). Efficient computation of SAR and temperature rise distributions in a human head at wide range of frequencies due to 5G RF field exposure. Aces. J. 33:1236–1242.
  • Kodera, S., Gomez-Tames, J., Hirata, A. (Jan 2018). Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy. Biomed. Eng. Online. 17:1–17. doi 10.1186/s12938-017-0432-x.
  • Laakso, I. (2009). Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz. Phys. Med. Biol. 54:3393–3404. doi 10.1088/0031-9155/54/11/008.
  • Lahkola, A., Auvinen, A., Raitanen, J., Schoemaker, M. J., et al. (2007). Mobile phone use and risk of glioma in 5 North European countries. Int. J. Cancer. 120:1769–1775. doi 10.1002/ijc.22503.
  • Lin, J. C. (Dec 2010). Epidemiological studies on tumor incidence in cell phone users [health effects]. IEEE. Microwave. Mag. 11:36–38. doi 10.1109/MMM.2010.938553.
  • Lu, Y., Ying, J., Tan, T.-K., Arichandran, K. (1996). Electromagnetic and thermal simulations of 3-D human head model under RF radiation by using the FDTD and FD approaches. IEEE. Trans. Magn. 32:1653–1656. doi 10.1109/20.497572.
  • Mustafa, S., Abbosh, A. (2013). Genetic algorithm to formulate fourth order Debye model of main head tissues. 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul. pp. 119–121. doi 10.1016/j.jecp.2013.08.005
  • Oliveira, M. M., Wen, P., Ahfock, T. (June 2016). Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity. Comput. Methods. Programs. Biomed. 133:71–81. doi 10.1016/j.cmpb.2016.05.022.
  • Online website (March 2019). Available from: http://noodle.med.yale.edu/zubal/
  • Online website (March 2019a). Available from: https://support.alwaysonlinewireless.com/hc/en-us/articles/115002446723-3G-4G-Frequency-List
  • Online website (March 2019b). Available from: https://gsacom.com/5g-spectrum-bands/
  • Pennes, H. H. (1948). Analysis of tissue and arterial blood temperature in resting forearm. J. Appl. Physiol. 1:93–122. doi 10.1152/jappl.1948.1.2.93.
  • Wang, J., Fujiwara, O. (Aug 1999). FDTD computation of temperature rise in the human head for portable telephones. IEEE. Trans. Microwave. Theory. Tech. 47:1528–1534. doi 10.1109/22.780405.
  • Yano, M., Wang, J., Fujiwara, O. (2001). FDTD computation of temperature rise in a realistic head models simulating adult and infant for 1.5-GHz microwave exposure. Electron. Comm. Jpn. Pt. I. 84:57–66. doi 10.1002/1520-6424(200104)84:4<57::AID-ECJA7>3.0.CO;2-J.
  • Yoo, D. S. (Oct 2004). The dielectric properties of cancerous tissues in a nude mouse xenograft model. Bioelectromagnetics. 25:492–497. doi 10.1002/bem.20021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.