174
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effect of pulsed millisecond current magnetic field on the proliferation of C6 rat glioma cells

, , , , &
Pages 185-197 | Received 19 Sep 2018, Accepted 31 Mar 2019, Published online: 06 May 2019

References

  • Akbarnejad, Z., Eskandary, H., Vergallo, C., et al. (2016). Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn. Biol. Med. 2016:1–10.
  • AYaE, I. G. P., Zafer, A., AaULE, O., et al. (2010). Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn. Biol. Med. 29:122–130. doi 10.3109/15368378.2010.502451.
  • Barnes, F., Greenenbaum, B. (2016). Some effects of weak magnetic fields on biological systems: RF fields can change radical concentrations and cancer cell growth rates. IEEE Power Electron. Mag. 3:60–68. doi 10.1109/MPEL.2015.2508699.
  • Buckner, C. A., Buckner, A. L., Koren, S. A., et al. (2015). Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS. ONE. 10:e0124136. doi 10.1371/journal.pone.0124136.
  • Buckner, C. A., Buckner, A. L., Koren, S. A., et al. (2017). The effects of electromagnetic fields on B16-BL6 cells are dependent on their spatial and temporal character. Bioelectromagnetics. 38(3):165–174.
  • Cameron, I. L., Markov, M. S., Hardman, W. E. (2014). Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity. Cancer Cell. Int. 14:1–10. doi 10.1186/1475-2867-14-1.
  • Chenguo, Y., Yan, M., Chengxiang, L., et al. (2008). Study of transmembrane potentials on cellular inner and outer membrane–Frequency response model and its filter characteristic simulation. IEEE Trans. Biomed. Eng. 55:1792–1799. doi 10.1109/TBME.2008.919887.
  • Cifra, M., Fields, J. Z., Farhadi, A. (2011). Electromagnetic cellular interactions. Prog. Biophys. Mol. Bio.l 105:223–246. doi 10.1016/j.pbiomolbio.2010.07.003.
  • DE, S. R., Tuffet, S., Moreau, J. M., Veyret, B. (2000). Effects of 100 mT time varying magnetic fields on the growth of tumors in mice. Bioelectromagnetics 21:107. doi 10.1002/(SICI)1521-186X(200002)21:2<107::AID-BEM5>3.0.CO;2-6.
  • Destefanis, M., Viano, M., Leo, C., et al. (2015). Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. Int. J. Radiat. Biol. 91:964–972. doi 10.3109/09553002.2015.1101648.
  • Dini, L., Vergallo, C. (2009). Environmental Factors Affecting Phagocytosis of Dying Cells: Smokingand Static Magnetic Fields. Netherlands: Springer.
  • Filipovic, N., Djukic, T., Radovic, M., et al. (2014). Electromagnetic field investigation on different cancer cell lines. Cancer Cell. Int. 14:84. doi 10.1186/1475-2867-14-67.
  • Foster, K. R. (1996). Electromagnetic field effects and mechanisms. IEEE Eng. Med. Biol. Mag. 15:50–56. doi 10.1109/51.511982.
  • Frohlich, H. (1978). Coherent electric vibrations in biological systems and the cancer problem. IEEE Trans. Microw. Theory Tech. 26:613–618. doi 10.1109/TMTT.1978.1129446.
  • Goraca, A., Ciejka, E., Piechota, A. (2010). Effects of extremely low frequency magnetic field on the parameters of oxidative stress in heart. J. Physiol. Pharmacol. 61:333–338.
  • Koch, C. L. M. B., Sommarin, M., Persson, B. R. R., et al. (2003). Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402. doi 10.1002/bem.10136.
  • Kotnik, T., Kramar, P., Pucihar, G., et al. (2012). Cell membrane electroporation- Part 1: The phenomenon. IEEE Electr. Insul. Mag. 28:14–23. doi 10.1109/MEI.2012.6268438.
  • Lenting, K., Verhaak, R., Laan, M. T., et al. (2017). Glioma: Experimental models and reality. Acta. Neuropathol. 133:263–282. doi 10.1007/s00401-017-1671-4.
  • Lucia, U., Ponzetto, A., Dawson, K. A., et al. (2017). Some thermodynamic considerations on low frequency electromagnetic waves effects on cancer invasion and metastasis. Physica A-Stat. Mech. Its App. 467:289–295. doi 10.1016/j.physa.2016.10.043.
  • Min, K. A., Shin, M. C., Yu, F., et al. (2013). Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano. 7:2161. doi 10.1021/nn305697q.
  • Panagopoulos, D. J., Karabarbounis, A., Margaritis, L. H. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophy.S Res. Commun. 298:95–102. doi 10.1016/S0006-291X(02)02393-8.
  • Patruno, A., Tabrez, S., Pesce, M., et al. (2015). Effects of extremely low frequency electromagnetic field (ELF-EMF) on catalase, cytochrome P450 and nitric oxide synthase in erythro-leukemic cells. Life Sci. 121:117–123. doi 10.1016/j.lfs.2014.12.003.
  • Qiao, G., Wang, W., Duan, W., et al. (2012). Bioimpedance analysis for the characterization of breast cancer cells in suspension. IEEE Trans. Biomed. Eng. 59:2321–2329. doi 10.1109/TBME.2012.2202904.
  • Srdjenovic, B., Mrdjanovic, J., Galovic, A. J., et al. (2014). Effect of ELF-EMF on antioxidant status and micronuclei in K562 cells and normal lymphocytes. Cent. Eur. J. Biol. 9:931–940.
  • Tenforde, T. S. (1990). Biological interactions of extremely-low-frequency electric and magnetic fields. J. Electroanal. Chem. Interfacial. Electrochem. 320:1–17. doi 10.1016/0022-0728(91)85576-B.
  • Vergallo, C., Ahmadi, M., Mobasheri, H., Dini, L. (2014). Impact of inhomogeneous static magnetic field (31.7–232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration. PLoS. ONE. 9:e113530. doi 10.1371/journal.pone.0113530.
  • Wertheimer, N., Leeper, E. D. (1979). Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 109:273–284. doi 10.1093/oxfordjournals.aje.a112681.
  • Yan, M. (2007). Frequency Response of Transmenbrane Potential on Cell Inner and Outer Membrane Based on Equivalent Circuit Model. Trans. Chin. Electrotech. Soc. 22:6–11.
  • Yao, X., Sun, W., Chen, J., et al. (2008). Effects of pulse current electromagnetic fields on human peripheral lymphocytes. Toxicol. Environ. Chem. 90:1009–1017. doi 10.1080/02772240701806543.
  • Zimmerman, J. W., Pennison, M. J., Brezovich, I., et al. (2012). Cancer cell proliferation is inhibited by specific modulation frequencies. Br. J. Cancer 106:307–313. doi 10.1038/bjc.2011.523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.