112
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of low frequency magnetic field on efficiency of chromosome break repair

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 30-37 | Received 10 May 2019, Accepted 19 Aug 2019, Published online: 28 Oct 2019

References

  • Aylon, Y., B. Liefshitz, G. Bitan-Banin, and M. Kupiec. 2003. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23:1403–17. doi:10.1128/MCB.23.4.1403-1417.2003.
  • Bryan, A. K., A. Goranov, A. Amon, and S. R. Manalisa. 2010. Measurement of mass, density, and volume during the cell cycle of yeast. PNAS 107:999–1004. doi:10.1073/pnas.0901851107.
  • Cantoni, O., P. Sestili, M. Fiorani, and M. Dachá. 1996. Effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single strand breaks in cultured mammalian cells exposed to three different carcinogens: Methylmethane sulphonate, chromate and 254 nm UV radiation. Biochem. Mol. Biol. Int. 38:527–33.
  • Fatahi, M., A. Reddig, F. B. Vijayalaxmi, R. Hartig, T. J. Prihoda, J. Ricke, D. Roggenbuck, D. Reinhold, and O. Speck. 2016. DNA double strand-breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T Magnetic Resonance Imaging. Neuroimage 133:288–93. doi:10.1016/j.neuroimage.2016.03.023.
  • Friedl, A. A., M. Kiechle, B. Fellerhoff, and F. Eckardt-Schupp. 1998. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: Influence of DNA repair pathways. Genetics 148:975–88.
  • Harland, J. D., and R. P. Liburdy. 1997. Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics 18:555–62. doi:10.1002/(ISSN)1521-186X.
  • Höytö, A., M. Herrala, J. Luukkonen, J. Juutilainen, and J. Naarala. 2017. Cellular detection of 50 Hz magnetic fields and weak blue light: Effects on superoxide levels and genotoxicity. Int. J. Radiat. Biol. 93:646–52. doi:10.1080/09553002.2017.1294275.
  • Jaberi, F. M., S. Keshtgar, A. Tavakkoli, E. Pishva, B. Geramizadeh, N. Tanideh, and M. M. Jaberi. 2011. A moderate–Intensity static magnetic field enhances repair of cartilage damage in rabbits. Arch. Med. Res. 42:268–73. doi:10.1016/j.arcmed.2011.06.004.
  • Kubinyi, G., Z. Zeitler, G. Thuróczy, P. Juhász, J. Bakos, H. Sinay, and J. László. 2010. Effects of homogeneous and inhomogeneous static magnetic fields combined with gamma radiation on DNA and DNA repair. Bioelectromagnetics 31:488–94. doi:10.1002/bem.20577.
  • Lee, C. H., H. M. Chen, L. K. Yeh, M. Y. Hong, G. S. Huang. 2012. Dosage-dependent inducton of behavioral decline in Caenorhabditis elegans by long-term treatment of static magnetic fields. J. Radiat. Res. 53:24–32. doi:10.1269/jrr.11057.
  • Luukkonen, J., A. Liimatainen, J. Juutilainen, and J. Naarala. 2014. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat. Res. 760:33–41. doi:10.1016/j.mrfmmm.2013.12.002.
  • Miyagi, N., K. Sato, Y. Rong, S. Yamamura, H. Katagiri, K. Kobayashi, and H. Iwata. 2000. Effects of PEMF on a murine osteosarcoma cell line: Drug-resistant (P-glycoprotein-positive) and non-resistant cells. Bioelectromagnetics 21:112–21. doi:10.1002/(ISSN)1521-186X.
  • Nakayama, M., A. Nakamura, T. Hondou, and H. Miyata. 2016. Evaluation of cell viability, DNA single-strand breaks, and nitric oxide production in LPS-stimulated macrophage RAW264 exposed to a 50-Hz magnetic field. Int. J. Radiat. Biol. 92:583–89. doi:10.1080/09553002.2016.1206224.
  • Ruiz Gómez, M. J., J. M. Pastor Vega, L. de la Peña, L. Gil Carmona, and M. Martínez Morillo. 1999. Growth modification of human colon adenocarcinoma cells exposed to a low-frequency electromagnetic field. J. Physiol. Biochem. 55:79–84.
  • Ruiz-Gómez, M., F. Sendra-Portero, and M. Martínez-Morillo. 2010a. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int. J. Radiat. Biol. 86:602–11. doi:10.3109/09553001003734519.
  • Ruiz-Gómez, M. J., L. de la Peña, M. I. Prieto-Barcia, J. M. Pastor, L. Gil, and M. Martínez-Morillo. 2002. Influence of 1 and 25 Hz, 1.5 mT magnetic fields on antitumor drug potency in a human adenocarcinoma cell line. Bioelectromagnetics 23:578–85. doi:10.1002/bem.10054.
  • Ruiz-Gómez, M. J., and M. Martínez-Morillo. 2005. Enhancement of the cell-killing effect of ultraviolet-C radiation by short-term exposure to a pulsed magnetic field. Int. J. Radiat. Biol. 81:483–90. doi:10.1080/09553000500196805.
  • Ruiz-Gómez, M. J., and M. Martínez-Morillo. 2009. Electromagnetic fields and the induction of DNA strand breaks. Electromagn. Biol. Med. 28:201–14. doi:10.1080/15368370802608696.
  • Ruiz-Gómez, M. J., M. D. Merino-Moyano, M. G. Cebrián-Martín, M. I. Prieto-Barcia, and M. Martínez-Morillo. 2008. No effect of 50 Hz 2.45 mT magnetic field on the potency of cisplatin, mitomycin C and methotrexate in S. cerevisiae. Electromagn. Biol. Med. 27:289–97. doi:10.1080/15368370802277740.
  • Ruiz-Gómez, M. J., M. I. Prieto-Barcia, E. Ristori-Bogajo, and M. Martínez-Morillo. 2004. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry 64:151–55. doi:10.1016/j.bioelechem.2004.04.003.
  • Ruiz-Gómez, M. J., E. Ristori-Bogajo, M. I. Prieto-Barcia, and M. Martínez-Morillo. 2010b. No evidence of cellular alterations by milliTesla-level static and 50 Hz magnetic fields on S. cerevisiae. Electromagn. Biol. Med. 29:154–64. doi:10.3109/07435800.2010.505158.
  • Sebastian Franco, J. L., A. Sanchis Otero, J. Roldan Madroñero, and S. M. San Martin. 2013. Dielectric characterization of the yeast cell budding cycle. Prog. Electromagnet. Res. 134:1–22. doi:10.2528/PIER12100406.
  • Simkó, M., and M. O. Mattsson. 2004. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation. J. Cell. Biochem. 93:83–92. doi:10.1002/jcb.20198.
  • Song, K., S. H. Im, Y. J. Yoon, H. M. Kim, H. J. Lee, and G. S. Park. 2018. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS ONE 13:e0199753. doi:10.1371/journal.pone.0199753.
  • Teodori, L., A. Giovanetti, M. C. Albertini, M. Rocchi, B. Perniconi, M. G. Valente, and D. Coletti. 2014. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells. J. Radiat. Res. 55:218–27. doi:10.1093/jrr/rrt107.
  • Wakeford, R. 2004. The cancer epidemiology of radiation. Oncogene 23:6404–28. doi:10.1038/sj.onc.1207896.
  • Walch, A., A. Brachat, R. Pöhlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–808. doi:10.1002/yea.320101310.
  • Woodbine, L., J. Haines, M. Coster, L. Barazznol, E. Ainsbury, Z. Sienkiewicz, and P. Jeggo. 2015. The rate of X–Ray–Induced DNA double–Strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields. Int. J. Radiat. Biol. 91:495–99. doi:10.3109/09553002.2015.1021963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.