226
Views
6
CrossRef citations to date
0
Altmetric
Articles

The effects of repetitive transcranial magnetic stimulation on the cognition and neuronal excitability of mice

ORCID Icon, , , , , & show all
Pages 9-19 | Received 25 Jun 2019, Accepted 18 Nov 2019, Published online: 23 Nov 2019

References

  • Ahmed, M. A., E. S. Darwish, E. M. Khedr, Y. M. El Serogy, and A. M. Ali. 2012. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J. Neurol. 259:83–92. doi:10.1007/s00415-011-6128-4.
  • Banerjee, J., M. E. Sorrell, P. A. Celnik, G. Pelled, and J. Choi. 2017. Immediate effects of repetitive magnetic stimulation on single cortical pyramidal neurons. PLoS ONE 12:e0170528. doi:10.1371/journal.pone.0170528.
  • Barker, G. R., and E. C. Warburton. 2011. When is the hippocampus involved in recognition memory? J. Neurosci. 31:10721–31. doi:10.1523/JNEUROSCI.6413-10.2011.
  • Cantarero, G., A. Lloyd, and P. Celnik. 2013a. Reversal of long-term potentiation-like plasticity processes after motor learning disrupts skill retention. J. Neurosci. 33:12862–69. doi:10.1523/JNEUROSCI.1399-13.2013.
  • Cantarero, G., B. Tang, R. O’Malley, R. Salas, and P. Celnik. 2013b. Motor learning interference is proportional to occlusion of LTP-like plasticity. J. Neurosci. 33:4634–41. doi:10.1523/JNEUROSCI.4706-12.2013.
  • Cantello, R., S. Rossi, C. Varrasi, M. Ulivelli, C. Civardi, S. Bartalini, G. Vatti, M. Cincotta, A. Borgheresi, G. Zaccara, et al. 2007. Slow repetitive TMS for drug‐resistant epilepsy: Clinical and EEG findings of a placebo‐controlled trial. Epilepsia 48:366–74. doi:10.1111/epi.2007.48.issue-2.
  • Estrada, C., F. J. Fernandez-Gomez, D. Lopez, A. Gonzalez-Cuello, I. Tunez, F. Toledo, O. Blin, R. Bordet, J. C. Richardson, E. Fernandez-Villalba, et al. 2015a. Transcranial magnetic stimulation and aging: Effects on spatial learning and memory after sleep deprivation in Octodon degus. Neurobiol. Learn Mem. 125:274–81. doi:10.1016/j.nlm.2015.09.011.
  • Estrada, C., D. Lopez, A. Conesa, F. J. Fernández-Gómez, A. Gonzalez-Cuello, F. Toledo, I. Tunez, O. Blin, R. Bordet, J. C. Richardson, et al. 2015b. Cognitive impairment after sleep deprivation rescued by transcranial magnetic stimulation application in Octodon degus. Neurotox. Res. 28:361–71. doi:10.1007/s12640-015-9544-x.
  • Garcia-Toro, M., J. Salva, J. Daumal, J. Andres, M. Romera, O. Lafau, M. Echevarría, M. Mestre, C. Bosch, C. Collado, et al. 2006. High (20-Hz) and low (1-Hz) frequency transcranial magnetic stimulation as adjuvant treatment in medication-resistant depression. Psychiatry Res. 146:53–57. doi:10.1016/j.pscychresns.2004.08.005.
  • Gomes-Osman, J., A. Indahlastari, and P. J. Fried. 2018. Non-invasive brain stimulation: Probing intracortical circuits and improving cognition in the aging brain. Front Aging Neurosci. 10:177.
  • Hallett, M. 2007. Transcranial magnetic stimulation: A primer. Neuron 55:187–99. doi:10.1016/j.neuron.2007.06.026.
  • Holscher, C. 1999. Synaptic plasticity and learning and memory: LTP and beyond. J. Neurosci. Res. 58:62–75. doi:10.1002/(SICI)1097-4547(19991001)58:1<>1.0.CO;2-I.
  • Kameyama, T., T. Nabeshima, and T. Kozawa. 1986. Step-down-type passive avoidance- and escape-learning method. Suitability for experimental amnesia models. J. Pharmacol. Methods 16:39–52. doi:10.1016/0160-5402(86)90027-6.
  • Kheirbek, M. A., L. J. Drew, N. S. Burghardt, D. Costantini, L. Tannenholz, S. Ahmari, H. Zeng, A. Fenton, and R. Hen. 2013. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77:955–68. doi:10.1016/j.neuron.2012.12.038.
  • Klomjai, W., R. Katz, and A. Lackmy-Vallee. 2015. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 58:208–13. doi:10.1016/j.rehab.2015.05.005.
  • Levkovitz, Y., and M. Segal. 2001. Aging affects transcranial magnetic modulation of hippocampal evoked potentials. Neurobiol. Aging 22:255–63. doi:10.1016/S0197-4580(00)00195-0.
  • Ljubisavljevic, M. R., F. Y. Ismail, and S. Filipovic. 2013. Transcranial magnetic stimulation of degenerating brain: A comparison of normal aging, Alzheimer’s, Parkinson’s and Huntington’s disease. Curr. Alzheimer Res. 10:578–96. doi:10.2174/15672050113109990133.
  • Ma, J., Z. Zhang, L. Kang, D. Geng, Y. Wang, M. Wang, and H. Cui. 2014. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp. Gerontol. 58:256–68. doi:10.1016/j.exger.2014.08.011.
  • Mally, J., and T. W. Stone. 1999. Therapeutic and “dose‐dependent” effect of repetitive microelectroshock induced by transcranial magnetic stimulation in Parkinson’s disease. J. Neurosci. Res. 57:935. doi:10.1002/(SICI)1097-4547(19990915)57:6<>1.0.CO;2-C.
  • Miniussi, C., and P. M. Rossini. 2011. Transcranial magnetic stimulation in cognitive rehabilitation. Neuropsychol. Rehabil. 21:579–601. doi:10.1080/09602011.2011.562689.
  • Nakashiba, T., J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. Buhl, T. McHugh, V. Barrera, R. Chittajallu, K. Iwamoto, C. McBain, et al. 2012. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201. doi:10.1016/j.cell.2012.01.046.
  • Nardone, R., J. Bergmann, and M. Christova. 2012. Effect of transcranial brain stimulation for the treatment of Alzheimer disease: A review. Int. J. Alzheimers Dis. 2012:687909.
  • Nasehi, M., M. Piri, M. Nouri, D. Farzin, T. Nayer-Nouri, and M. R. Zarrindast. 2010. Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. Eur. J. Pharmacol. 634:77–83. doi:10.1016/j.ejphar.2010.02.027.
  • Parthoens, J., J. Verhaeghe, T. Wyckhuys, S. Stroobants, and S. Staelens. 2014. Small-animal repetitive transcranial magnetic stimulation combined with [18F]-FDG microPET to quantify the neuromodulation effect in the rat brain. Neuroscience 275:436–43. doi:10.1016/j.neuroscience.2014.06.042.
  • Pierson, J. L., S. E. Pullins, and J. J. Quinn. 2015. Dorsal hippocampus infusions of CNQX into the dentate gyrus disrupt expression of trace fear conditioning. Hippocampus 25:779–85. doi:10.1002/hipo.v25.7.
  • Pitcher, D., L. Garrido, V. Walsh, and B. C. Duchaine. 2008. Transcranial magnetic stimulation disrupts the perception and embodiment of facial expressions. J. Neurosci. 28:8929–33. doi:10.1523/JNEUROSCI.1450-08.2008.
  • Rapinesi, C., F. S. Bersani, G. D. Kotzalidis, C. Imperatori, A. Del Casale, S. Di Pietro, V. R. Ferri, D. Serata, R. N. Raccah, A. Zangen, et al. 2015. Maintenance deep transcranial magnetic stimulation sessions are associated with reduced depressive relapses in patients with unipolar or bipolar depression. Front Neurol. 6:16. doi:10.3389/fneur.2015.00016.
  • Rossi, S., M. Hallett, P. M. Rossini, and A. Pascual-Leone. 2009. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120:2008–39. doi:10.1016/j.clinph.2009.08.016.
  • Shang, Y., X. Wang, X. Shang, H. Zhang, Z. Liu, T. Yin, and T. Zhang. 2016. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol. Learn Mem. 134 (Pt B):369–78. doi:10.1016/j.nlm.2016.08.016.
  • Simonetta-Moreau, M. 2014. Non-invasive brain stimulation (NIBS) and motor recovery after stroke. Ann. Phys. Rehabil. Med. 57:530–42. doi:10.1016/j.rehab.2014.08.003.
  • Stefanelli, T., C. Bertollini, C. Luscher, D. Muller, and P. Mendez. 2016. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89:1074–85. doi:10.1016/j.neuron.2016.01.024.
  • Sun, P., F. Wang, L. Wang, Y. Zhang, R. Yamamoto, T. Sugai, Q. Zhang, Z. Wang, and N. Kato. 2011. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: A transcranial magnetic stimulation study. J. Neurosci. 31:16464–72. doi:10.1523/JNEUROSCI.1542-11.2011.
  • Tan, T., J. Xie, Z. Tong, T. Liu, X. Chen, and X. Tian. 2013. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res. 1520:23–35. doi:10.1016/j.brainres.2013.04.053.
  • Tang, A. D., K. Makowiecki, C. Bartlett, J. Rodger, and R. Linden. 2015. Low intensity repetitive transcranial magnetic stimulation does not induce cell survival or regeneration in a mouse optic nerve crush model. PLoS ONE 10:e0126949. doi:10.1371/journal.pone.0126949.
  • Tarragon, E., D. Lopez, C. Estrada, A. Gonzalez-Cuello, C. M. Ros, Y. Lamberty, F. Pifferi, M. Cella, M. Canovi, G. Guiso, et al. 2014. Memantine prevents reference and working memory impairment caused by sleep deprivation in both young and aged Octodon degus. Neuropharmacology 85:206–14. doi:10.1016/j.neuropharm.2014.05.023.
  • Thickbroom, G. W. 2007. Transcranial magnetic stimulation and synaptic plasticity: Experimental framework and human models. Exp. Brain Res. 180:583–93. doi:10.1007/s00221-007-0991-3.
  • Walsh, V., and A. Cowey. 2000. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1:3–75. doi:10.1038/35036239.
  • Wang, F., Y. Zhang, L. Wang, P. Sun, X. Luo, Y. Ishigaki, T. Sugai, R. Yamamoto, and N. Kato. 2015a. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer’s disease model mice. Neuropharmacology 97:210–19. doi:10.1016/j.neuropharm.2015.05.027.
  • Wang, H., Y. Geng, B. Han, J. Qiang, X. Li, M. Sun, Q. Wang, and M. Wang. 2013. Repetitive transcranial magnetic stimulation applications normalized prefrontal dysfunctions and cognitive-related metabolic profiling in aged mice. PLoS ONE 8:e81482. doi:10.1371/journal.pone.0081482.
  • Wang, H.-L., X.-H. Xian, -Y.-Y. Wang, Y. Geng, B. Han, M.-W. Wang, and W.-B. Li. 2015b. Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Neurobiol. Learn Mem. 118:1–7. doi:10.1016/j.nlm.2014.11.002.
  • Wölwer, W., A. Lowe, J. Brinkmeyer, M. Streit, M. Habakuck, M. W. Agelink, A. Mobascher, W. Gaebel, and J. Cordes. 2014. Repetitive transcranial magnetic stimulation (rTMS) improves facial afect recognition in schizophrenia. Brain. Stimul. 7:559–63. doi:10.1016/j.brs.2014.04.011.
  • Xavier, G. F., and V. C. Costa. 2009. Dentate gyrus and spatial behaviour. Prog. Neuropsychopharmacol. Biol. Psychiatry 33:762–73. doi:10.1016/j.pnpbp.2009.03.036.
  • Yang, J., L. Wang, F. Wang, X. Tang, P. Zhou, R. Liang, C. Zheng, and D. Ming. 2019. Low-frequency pulsed magnetic field improves depression-like behaviors and cognitive impairments in depressive rats mainly via modulating synaptic function. Front Neurosci. 13:820. doi:10.3389/fnins.2019.00820.
  • Zhang, X., C. Yang, J. Gao, H. Yin, H. Zhang, T. Zhang, and Z. Yang. 2017. Voluntary running-enhanced synaptic plasticity, learning and memory are mediated by Notch1 signal pathway in C57BL mice. Brain Struct. Funct. 223:749–767. doi:10.1007/s00429-017-1521-0.
  • Ziemann, U., W. Paulus, M. A. Nitsche, A. Pascual-Leone, W. D. Byblow, A. Berardelli, H. R. Siebner, J. Classen, L. G. Cohen, J. C. Rothwell, et al. 2008. Consensus: Motor cortex plasticity protocols. Brain. Stimul. 1:164–82. doi:10.1016/j.brs.2008.06.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.