122
Views
9
CrossRef citations to date
0
Altmetric
Articles

Predicting electrotransfer in ultra-high frequency sub-microsecond square wave electric fields

, , , , , , & show all
Pages 1-8 | Received 11 Sep 2019, Accepted 15 Dec 2019, Published online: 29 Dec 2019

References

  • Ahmed, M. R., R. Todd, and A. J. Forsyth. 2017. Predicting SiC MOSFET behavior under hard-switching, soft-switching, and false turn-on conditions. IEEE Trans. Ind. Electron. 64:9001–11. doi:10.1109/TIE.41.
  • Arena, C. B., M. B. Sano, J. H. Rossmeisl, J. L. Caldwell, P. A. Garcia, M. N. Rylander, and R. V. Davalos. 2011a. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed. Eng. Online 10:102. doi:10.1186/1475-925X-10-102.
  • Arena, C. B., M. B. Sano, J. H. Rossmeisl, J. L. Caldwell, P. A. Garcia, M. N. Rylander, and R. V. Davalos. 2011b. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed. Eng. Online 10:102. doi:10.1186/1475-925X-10-102.
  • Bhonsle, S. P., C. B. Arena, D. C. Sweeney, and R. V. Davalos. 2015. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed. Eng. Online 14:S3. doi:10.1186/1475-925X-14-S3-S3.
  • Calvet, C. Y., D. Famin, F. M. André, and L. M. Mir. 2014. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology 3:e28131. doi:10.4161/onci.28131.
  • Cemazar, M., G. Sersa, W. Frey, D. Miklavcic, and J. Teissié. 2018. Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 122:69–76. doi:10.1016/j.bioelechem.2018.03.005.
  • Chen, X., Z. Ren, T. Zhu, X. Zhang, Z. Peng, H. Xie, L. Zhou, S. Yin, J. Sun, and S. Zheng. 2015. Electric ablation with irreversible electroporation (IRE) in vital hepatic structures and follow-up investigation. Sci. Rep. 5:16233. doi:10.1038/srep16233.
  • Davalos, R. V., L. M. Mir, and B. Rubinsky. 2005. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–31. doi:10.1007/s10439-005-8981-8.
  • Fazelkhah, A., K. Braasch, S. Afshar, E. Salimi, M. Butler, G. Bridges, and D. Thomson. 2018. Quantitative model for ion transport and cytoplasm conductivity of Chinese hamster ovary cells. Sci. Rep. 8. doi: 10.1038/s41598-018-36127-3.
  • Gehl, J. 2015. Drug and gene electrotransfer in cancer therapy. In Li XQ., Donnelly D., Jensen T. (eds), Somatic genome manipulation: Advances, methods, and applications, 3–15. Springer, New York, NY.
  • Ivey, J. W., E. L. Latouche, M. L. Richards, G. J. Lesser, W. Debinski, R. V. Davalos, and S. S. Verbridge. 2017. Enhancing irreversible electroporation by manipulating cellular biophysics with a molecular adjuvant. Biophys. J. 113:472–80. doi:10.1016/j.bpj.2017.06.014.
  • Kotnik, T., P. Kramar, G. Pucihar, D. Miklavčič, and M. Tarek. 2012. Cell membrane electroporation - Part 1: The phenomenon. IEEE Electr. Insul. Mag. 28:14–23. doi:10.1109/MEI.2012.6268438.
  • Krassowska, W., and P. D. Filev. 2007. Modeling electroporation in a single cell. Biophys. J. 92:404–17. doi:10.1529/biophysj.106.094235.
  • Mi, Y., J. Xu, X. Tang, C. Bian, H. Liu, Q. Yang, and J. Tang. 2018. Scaling relationship of in vivo muscle contraction strength of rabbits exposed to high-frequency nanosecond pulse bursts. Technol. Cancer Res. Treat. 17:153303381878807. doi:10.1177/1533033818788078.
  • Mi, Y., J. Xu, X. Tang, C. Yao, and C. Li. 2017. Electroporation simulation of a multicellular system exposed to high-frequency 500 ns pulsed electric fields. IEEE Trans. Dielectr. Electr. Insul. 24:3985–94. doi:10.1109/TDEI.2017.006365.
  • Mi, Y., J. Xu, C. Yao, C. Li, and H. Liu. 2019. Electroporation modeling of a single cell exposed to high-frequency nanosecond pulse bursts. IEEE Trans. Dielectr. Electr. Insul. 26:461–68. doi:10.1109/TDEI.2018.007777.
  • Muratori, C., A. G. Pakhomov, S. Xiao, and O. N. Pakhomova. 2016. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures. Sci. Rep. 6:23225. doi:10.1038/srep23225.
  • Murovec, T., D. C. Sweeney, E. Latouche, R. V. Davalos, and C. Brosseau. 2016. Modeling of transmembrane potential in realistic multicellular structures before electroporation. Biophys. J. 111:2286–95. doi:10.1016/j.bpj.2016.10.005.
  • Novickij, V., P. Ruzgys, A. Grainys, and S. Šatkauskas. 2018. High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation. Bioelectrochemistry 119:92–97. doi:10.1016/j.bioelechem.2017.09.006.
  • Pakhomova, O. N., V. A. Khorokhorina, A. M. Bowman, R. Rodaite-Riševičiene, G. Saulis, S. Xiao, and A. G. Pakhomov. 2012. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch. Biochem. Biophys. 527:55–64. doi:10.1016/j.abb.2012.08.004.
  • Pucihar, G., J. Krmelj, M. Reberšek, T. B. Napotnik, and D. Miklavčič. 2011. Equivalent pulse parameters for electroporation. IEEE Trans. Biomed. Eng. 58:3279–88. doi:10.1109/TBME.2011.2167232.
  • Pucihar, G., D. Miklavčič, and T. Kotnik. 2009. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans. Biomed. Eng. 56:1491–501. doi:10.1109/TBME.2009.2014244.
  • Rolong, A., R. V. Davalos, and B. Rubinsky. 2018. History of electroporation. In  Meijerink M., Scheffer H., Narayanan G. (eds), Irreversible electroporation in clinical practice, 13–37. Springer, Cham.
  • Rolong, A., E. M. Schmelz, and R. V. Davalos. 2017. High-frequency irreversible electroporation targets resilient tumor-initiating cells in ovarian cancer. Integr. Biol. 9: 979–987.
  • Romeo, S., A. Sannino, M. R. Scarfì, P. T. Vernier, R. Cadossi, J. Gehl, and O. Zeni. 2018. ESOPE-equivalent pulsing protocols for calcium electroporation: An in vitro optimization study on 2 cancer cell models. Technol. Cancer Res. Treat. 17:153303381878807. doi:10.1177/1533033818788072.
  • Ruzgys, P., V. Novickij, J. Novickij, and S. Šatkauskas. 2018. Nanosecond range electric pulse application as a non-viral gene delivery method: Proof of concept. Sci. Rep. 8:1–8. doi:10.1038/s41598-018-33912-y.
  • Ruzgys, P., V. Novickij, J. Novickij, and S. Šatkauskas. 2019. Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range. Bioelectrochemistry 127:87–93. doi:10.1016/j.bioelechem.2019.02.002.
  • Salimi, E., K. Braasch, M. Butler, D. J. Thomson, and G. E. Bridges. 2017. Dielectrophoresis study of temporal change in internal conductivity of single CHO cells after electroporation by pulsed electric fields. Biomicrofluidics 11:014111. doi:10.1063/1.4975978.
  • Sano, M. B., R. E. Fan, K. Cheng, Y. Saenz, G. A. Sonn, G. L. Hwang, and L. Xing. 2018. Reduction of muscle contractions during irreversible electroporation therapy using high-frequency bursts of alternating polarity pulses: A laboratory investigation in an ex vivo swine model. J. Vasc. Interventional Radiol. 29:893–898.e4. doi:10.1016/j.jvir.2017.12.019.
  • Sano, M. B., R. E. Fan, and L. Xing. 2017. Asymmetric waveforms decrease lethal thresholds in high frequency irreversible electroporation therapies. Sci. Rep. 7. doi: 10.1038/srep40747.
  • Semenov, I., M. Casciola, B. L. Ibey, S. Xiao, and A. G. Pakhomov. 2018. Electropermeabilization of cells by closely spaced paired nanosecond-range pulses. Bioelectrochemistry 121:135–41. doi:10.1016/j.bioelechem.2018.01.013.
  • Shamoon, D., J. Dermol-Černe, L. Rems, M. Reberšek, T. Kotnik, S. Lasquellec, C. Brosseau, and D. Miklavčič. 2019. Assessing the electro-deformation and electro-poration of biological cells using a three-dimensional finite element model. Appl. Phys. Lett. 114:63701. doi:10.1063/1.5079292.
  • Silve, A., A. Guimerà Brunet, B. Al-Sakere, A. Ivorra, and L. M. Mir. 2014. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: Electropermeabilization-induced electro-desensitization? Biochim. Biophys. Acta - Gen. Subj. 1840:2139–51. doi:10.1016/j.bbagen.2014.02.011.
  • Stankevič, V., V. Novickij, S. Balevičius, N. Žurauskiene, A. Baškys, A. Dervinis, and V. Bleizgys. 2013. Electroporation system generating wide range square-wave pulses for biological applications. 2013 IEEE Biomedical Circuits and Systems Conference, BioCAS 2013, Rotterdam, Netherlands.
  • Steelman, Z. A., G. P. Tolstykh, H. T. Beier, and B. L. Ibey. 2016. Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity. Biochem. Biophys. Res. Commun. 478:1261–67. doi:10.1016/j.bbrc.2016.08.107.
  • Towhidi, L., D. Khodadadi, N. Maimari, R. M. Pedrigi, H. Ip, Z. Kis, B. R. Kwak, T. W. Petrova, M. Delorenzi, and R. Krams. 2016. Comparison between direct and reverse electroporation of cells in situ: A simulation study. Physiol. Rep. 4:e12673. doi:10.14814/phy2.12673.
  • Tsong, T. Y. Y. 1991. Electroporation of cell membranes. Biophys. J. 60:297–306. doi:10.1016/S0006-3495(91)82054-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.