154
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Biodielectric phenomenon for actively differentiating malignant and normal cells: An overview

ORCID Icon
Pages 89-96 | Received 28 Jun 2019, Accepted 12 Jan 2020, Published online: 05 Mar 2020

References

  • Al Ahmad, M., Z. Al Natour, F. Mustafa, and T. A. Rizvi. 2018. Electrical characterization of normal and cancer cells. IEEE Access. 6:25979–86. doi:10.1109/ACCESS.2018.2830883.
  • Bakewell, D. J., N. Vergara-Irigaray, and D. Holmes. 2013. Dielectrophoresis of biomolecules. JSM Nanotechnol. Nanomed. 1:1003.
  • Bronzino, J. D., and D. R. Peterson. 2014. Biomedical engineering fundamentals. Boca Raton, FL, USA: CRC press.
  • Burbank, F. 1997. Stereotactic breast biopsy of atypical ductal hyperplasia and ductal carcinoma in situ lesions: Improved accuracy with directional, vacuum-assisted biopsy. Radiology 202:843–47. doi:10.1148/radiology.202.3.9051043.
  • Cameron, I. L., N. K. R. Smith, T. B. Pool, and R. L. Sparks. 1980. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res. 40:1493–500.
  • Cheng, Y., and M. Fu. 2018. Dielectric properties for non‐invasive detection of normal, benign, and malignant breast tissues using microwave theories. Thoracic. Cancer 9:459–65. doi:10.1111/tca.2018.9.issue-4.
  • Cone, C. D., Jr. 1971. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J. Theor. Biol. 30:151–81. doi:10.1016/0022-5193(71)90042-7.
  • Cone, C. D., Jr. 1974. The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann. N. Y. Acad. Sci. 238:420–35. doi:10.1111/j.1749-6632.1974.tb26808.x.
  • Cone, Jr., C. D., Jr, and M. Tongier, Jr. Jr. 1971. Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology 25:168–82. doi:10.1159/000224567.
  • Damadian, R. 1971. Tumor detection by nuclear magnetic resonance. Science 171:1151–53. doi:10.1126/science.171.3976.1151.
  • Darling, M. L. R., D. N. Smith, S. C. Lester, C. Kaelin, D. L. G. Selland, C. M. Denison, P. J. DiPiro, D. I. Rose, E. Rhei, and J. E. Meyer. 2000. Atypical ductal hyperplasia and ductal carcinoma in situ as revealed by large-core needle breast biopsy: Results of surgical excision. Am. J. Roentgenology 175:1341–46. doi:10.2214/ajr.175.5.1751341.
  • Foster, K. R., and H. P. Schwan. 1989. Dielectric properties of tissues-a critical review. CRC Crit Rev Bioeng 1989:25-104.
  • Goldman, D. E. 1943. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27:37–60. doi:10.1085/jgp.27.1.37.
  • Gregory, W. D., J. J. Marx, C. W. O. Gregory, W. M. Mikkelson, J. A. Tjoe, and J. Shell. 2012. The cole relaxation frequency as a parameter to identify cancer in breast tissue. Med. Phys. 39:4167–74. doi:10.1118/1.4725172.
  • Han, A., L. Yang, and A. B. Frazier. 2007. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin. Cancer Res. 13:139–43. doi:10.1158/1078-0432.CCR-06-1346.
  • Hazlewood, C. F., D. C. Chang, D. Medina, G. Cleveland, and B. L. Nichols. 1972. Distinction between the preneoplastic and neoplastic state of murine mammary glands. Proc. Natl. Acad. Sci. 69:1478–80. doi:10.1073/pnas.69.6.1478.
  • Hazlewood, C. F., G. Cleveland, and D. Medina. 1974. Relationship between hydration and proton nuclear magnetic resonance relaxation times in tissues of tumor-bearing and non-tumor-bearing mice: Implications for cancer detection. J. Natl. Cancer Inst. 52:1849–53. doi:10.1093/jnci/52.6.1849.
  • Heileman, K., J. Daoud, and M. Tabrizian. 2013. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens. Bioelectron 49:348–59. doi:10.1016/j.bios.2013.04.017.
  • Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117:500–44. doi:10.1113/jphysiol.1952.sp004764.
  • Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108:37–77. doi:10.1113/jphysiol.1949.sp004310.
  • Hossain, S., 2018. A Molecular Dynamic Study of the Change in Permeability of DPPC Under the Influence of Shock Wave and Electric Field ( Doctoral dissertation, Central Michigan University).
  • Hossain, S., and A. Abdelgawad. 2020. Analysis of membrane permeability due to synergistic effect of controlled shock wave and electric field application. Electromagnetic Biology and Medicine 39 (1):20–29. doi:10.1080/15368378.2019.1706553.
  • Hu, Q., S. Hossain, and R. P. Joshi. 2018. Analysis of a dual shock-wave and ultrashort electric pulsing strategy for electro-manipulation of membrane nanopores. J. Phys. D: Appl. Phys. 51:285403. doi:10.1088/1361-6463/aaca7a.
  • Irimajiri, A., T. Suzaki, K. Asami, and T. Hanai. 1991. Dielectric modeling of biological cells: models and algorithm (commemoration issue dedicated to professor tetsuya HANAI on the occasion of his retirement).Institute for Chemical Research, Kyoto University.
  • Kuang, W., and S. O. Nelson. 1998. Low-frequency dielectric properties of biological tissues: A review with some new insights. Trans. ASAE-Am. Soc. Agric. Eng. 41:173–84. doi:10.13031/2013.17142.
  • Markx, G. H., and C. L. Davey. 1999. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzyme Microb. Technol. 25:161–71. doi:10.1016/S0141-0229(99)00008-3.
  • Martellosio, A., M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti, F. Svelto, P. E. Summers, G. Renne, L. Preda, and M. Bellomi. 2016. Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues. IEEE Trans. Microw. Theory Tech. 65:998–1011. doi:10.1109/TMTT.2016.2631162.
  • Qiao, G., W. Duan, C. Chatwin, A. Sinclair, and W. Wang. 2010. Electrical properties of breast cancer cells from impedance measurement of cell suspensions. J. Phys. Conf. Ser. 224:012081. IOP Publishing.
  • Rao, R., L. Lilley, V. Andrews, L. Radford, and M. Ulissey. 2009. Axillary staging by percutaneous biopsy: Sensitivity of fine-needle aspiration versus core needle biopsy. Ann. Surg. Oncol. 16:1170–75. doi:10.1245/s10434-009-0421-9.
  • Schwan, H. P. 1957. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5:147–209. Elsevier.
  • Siegel, R., C. DeSantis, and A. Jemal. 2014. Colorectal cancer statistics, 2014. CA Cancer. J. Clin. 64:104–17. doi:10.3322/caac.21220.
  • Smith, N. K., S. B. Stabler, I. L. Cameron, and D. Medina. 1981. X-Ray microanalysis of electrolyte content of normal, preneoplastic, and neoplastic mouse mammary tissue. Cancer Res. 41:3877–80.
  • Smith, N. R., R. L. Sparks, T. B. Pool, and I. L. Cameron. 1978. Differences in the intracellular concentration of elements in normal and cancerous liver cells as determined by X-ray microanalysis. Cancer Res. 38:1952–59.
  • Sparks, R. L., T. B. Pool, N. K. R. Smith, and I. L. Cameron. 1983. Effects of amiloride on tumor growth and intracellular element content of tumor cells in vivo. Cancer Res. 43:73–77.
  • Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. A. S. A. Swarup. 1988. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans. Biomed. Eng. 35:257–63. doi:10.1109/10.1374.
  • Taylor, J. M., and R. U. Simpson. 1992. Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Res. 52:2413–18.
  • Wagner, K. W. 1914. Erklärung der dielektrischen nachwirkungsvorgänge auf grund maxwellscher vorstellungen. Electr. Eng. (Archiv fur Elektrotechnik) 2:371–87.
  • Yang, M., and W. J. Brackenbury. 2013. Membrane potential and cancer progression. Front. Physiol. 4:185. doi:10.3389/fphys.2013.00185.
  • Yeo, L. Y., D. Lastochkin, S. C. Wang, and H. C. Chang. 2004. A new ac electrospray mechanism by Maxwell-Wagner polarization and capillary resonance. Phys. Rev. Lett. 92:133902. doi:10.1103/PhysRevLett.92.133902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.