153
Views
0
CrossRef citations to date
0
Altmetric
Articles

Specific low-frequency electromagnetic fields induce expression of active KDM6B associated with functional changes in U937 cells

, , &
Pages 139-153 | Received 29 Jul 2019, Accepted 26 Jan 2020, Published online: 10 Mar 2020

References

  • Arango Duque, G., and A. Descoteaux. 2014. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol 5:491. Review. doi:10.3389/fimmu.2014.00491.
  • Baek, Y.-S., S. Haas, H. Hackstein, G. Bein, M. H. Santana, H. Lehrach, S. Sauer, H. Seitz. 2009. Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells. BMC Immunol. 10:18. doi:10.1186/1471-2172-10-18.
  • Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meer, M. Wernig, K. Plath, et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26. doi:10.1016/j.cell.2006.02.041.
  • Blanchard, J. P. A., and C. F. Blackman. 1994. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–38. doi:10.1002/()1521-186X.
  • Bragin, D. E., O. A. Bragina, S. Hagberg. 2018. Pulsed electromagnetic field (PEMF) mitigates high intracranial pressure (ICP) induced microvascular shunting (MVS) in rats. Acta Neurochir. Suppl. 126:93–95.
  • Burchfield, J. S., Q. Li, H. Y. Wang, R.-F. Wang. 2015. JMJD3 as an epigenetic regulator in development and disease. Int. J. Biochem. Cell Biol 67:148–57. Review. doi:10.1016/j.biocel.2015.07.006.
  • Cai, J., W. Li, T. Sun, X. Li, E. Luo, D. Jing. 2018. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseo integration by promoting bone anabolism in type 1 diabetic rabbits. Osteoporos. Int 29:1177–91. doi:10.1007/s00198-018-4392-1.
  • Cao, R., L. Wang, H. Wang, L. Xia, H. Erdjument-Bromage, P. Tempst, R. S. Jones, Y. Zhang. 2002. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Sci. 298:1039–43. doi:10.1126/science.1076997.
  • Chimal-Ramirez, G.K.,N.A. Espinoza-Sánchez, L. Chávez-Sánchez, L. Arriaga-Pizano, E. M. Fuentes-Pananá. 2016. Monocyte differentiation towards protumor activity does not correlate with M1 or M2 phenotypes. J. Immunol. Res. 2016:6031486.
  • Chiabrera, A., B. Bianco, E. Moggia. 2000. Zeeman-stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics 21:312–24.
  • Cho, H. M. C., A. K. K. Cheing, G. Y. F. Ng. 2018. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS ONE 13:e019107.
  • Cossarizza, A., S. Angioni, F. Petraglia, A.R. Genazzani, D. Monti, M. Capri, F. Bersani, R. Cadossi, C. Franceschi. 1993. Exposure to low frequency pulsed electromagnetic fields increases interleukin-1 and interleukin-6 production by human peripheral blood mononuclear cells. Exp. Cell. Res 204:385–87. doi:10.1006/excr.1993.1048.
  • Dinarello, C. A. 2000. Proinflammatory cytokines. Chest 118:503–08. doi:10.1378/chest.118.2.503.
  • Dong, X., and Z. Weng. 2013. The correlation between histone modifications and gene expression. Epigenomics 5:113–16. doi:10.2217/epi.13.13.
  • Engstrom, S. 1996. Dynamic properties of Lednev’s parametric resonance mechanism. Bioelectromagnetics 17:58–70. doi:10.1002/()1521-186X.
  • Fivaz, M., and T. Meyer. 2003. Specific localization and timing “neuronal signal transduction mediated by protein-lipid interactions”. Neuron 40:319–30. doi:10.1016/S0896-6273(03)00634-2.
  • Gómez-Ochoa, I., P. Gómez-Ochoa, F. Gómez-Casal, E. Cativiela, L. Larrad-Mur. 2011. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture. Rheumatol. Int. 31:1283–89. doi:10.1007/s00296-010-1488-0.
  • Graham, T. R., and M. M. Kozlov. 2010. Interplay of proteins and lipids in generating membrane curvature. Curr. Opin. Cell Biol. 22:430–36. doi:10.1016/j.ceb.2010.05.002.
  • Ingersoll, M. A., A. M. Platt, S. Potteaux, G. J. Randolph. 2011. Monocyte trafficking in acute and chronic inflammation. Trends Immunol. 32:470–77. doi:10.1016/j.it.2011.05.001.
  • Ishii, M., H. Wen, C. A. Corsa, T. Liu, A. L. Coelho, R. M. Allen, W. F. Carson, K. A. Cavassani, X. Li, N. W. Lukacs, et al. 2009. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114:3244–54. doi:10.1182/blood-2009-04-217620.
  • Italiani, P., and D. Boraschi. 2014. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol. 5:514. doi:10.3389/fimmu.2014.00514.
  • Jia, S. J., K. Q. Gao, and M. Zhao. 2017. Epigenetic regulation in monocyte/macrophage: A key player during atherosclerosis. Cardiovasc. Ther. 35 (3).
  • J. C. McKay, F. S. Prato, A. W. Thomas. A Literature Review: The Effects of Magnetic Field Exposure on Blood Flow and Blood Vessels in the Microvasculature. Bioelectromagnetics Feb 2007, 28 (2), 81–98.
  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005.
  • Kubat, N. J., J. Moffett, and L. M. Fray. 2015. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. J. Inflamm. Res. 8:59–69. doi:10.2147/JIR.S78631.
  • Lednev, V. V. 1991. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75. doi:10.1002/()1521-186X.
  • Li, -J. K.-J., J. C.-A. Lin, H. C. Liu, W.H.-S. Chang. 2007. Cytokine release from osteoblasts in response to different intensities of pulsed electromagnetic field stimulation. Electromagn. Biol. Med. 26:153–65. doi:10.1080/15368370701572837.
  • Manente, A. G., G. Pinton, S. Zonca, D. Tavian, T. Habib, P. V. Jithesh, D. Fennell, S. Nilsson, L. Moro. 2016. KDM6B histone demethylase is an epigenetic regulator of estrogen receptor β expression in human pleural mesothelioma. Epigenomics 8:1227–38. doi:10.2217/epi-2016-0025.
  • Miller, S. L., D. G. Coughlin, E. I. Waldorff, J. T. Ryaby, J. C. Lotz. 2016. Pulsed electromagnetic field (PEMF) treatment reduces expression of genes associated with disc degeneration in human intervertebral disc cells. Spine J. 16:770–76. doi:10.1016/j.spinee.2016.01.003.
  • Moore, K. W., R. de Waal Malefyt, R. L. Coffman, A. O’Garra. 2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19:683–765. doi:10.1146/annurev.immunol.19.1.683.
  • Mosser, D. M., and X. Zhang. 2008. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 226:205–18. doi:10.1111/imr.2008.226.issue-1.
  • Muehsam, D. S., and A. A. Pilla. 1996. Lorentz approach to static magnetic field effects on bound ion dynamics and binding kinetics: Thermal noise considerations. Bioelectromagnetics 17:89–99. doi:10.1002/(SICI)1521-186X(1996)17:2<89::AID-BEM3>3.0.CO;2-1.
  • Nicholas, D., H. Tang, Q. Zhang, J. Rudra, F. Xu, W. Langridge, K. Zhang. 2015. Quantitative proteomics reveals a role for epigenetic reprogramming during human monocyte differentiation. Mol. Cell Proteomics 14:15–29. doi:10.1074/mcp.M113.035089.
  • Novikov, V. V., V. O. Ponomarev, G. V. Novikov, V. V. Kuvichkin, E. V. Iablokova, E. E. Fesenko. 2010. Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields. Biofizika 55:631–39.
  • Ongaro, A., K. Varani, F. F. Masieri, A. Pellati, L. Massari, R. Cadossi, F. Vincenzi, P. A. Borea, M. Fini, A. Caruso, M. De Mattei. 2012. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E 2 and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell Physiol. 227:2461–69. doi:10.1002/jcp.22981.
  • Opal, S. M., and V. A. DePalo. 2000. Anti-inflammatory cytokines. Chest 117:1162–72. doi:10.1378/chest.117.4.1162.
  • Panagopoulos, D. J., A. Karabarbounis, and L. H. Margaritis. 2002. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102. doi:10.1016/S0006-291X(02)02393-8.
  • Panagopoulos, D. J., N. Messini, A. Karabarbounis, A. L. Philippetis, L. H. Margaritis. 2000. A mechanism for action of oscillating electric fields on cells. Biochem. Biophys. Res. Commun 272:634–40. doi:10.1006/bbrc.2000.2746.
  • Pilla, A. A. 2006. Mechanisms and therapeutic applications of time-varying and static magnetic fields. In Barnes F, Greenebaum B, Eds, Handbook of biological effects of electromagnetic fields, 1–79. Boca Raton, FL: CRS Press.
  • Pinton, G., A. Ferraro, M. Balma, M. Laura. 2018. Specific low frequency electromagnetic fields induce epigenetic and functional changes in U937 cells. ArXiv: 1810.06255.
  • Rohde, C., A. Chiang, O. Adipoju, D. Casper, A. A. Pilla. 2010. Effects of pulsed electromagnetic fields on interleukin-1β and postoperative pain: A double-blind, placebo-controlled, pilot study in breast reduction patients. Plast Reconstr Surg. 125:1620–29. doi:10.1097/prs.0b013e3181c9f6d3.
  • Salminen, A., K. Kaarniranta, M. Hiltunen, A. Kauppinen. et al. 2014. Histone demethylase jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J. Mol. Med. (Berl) 92:1035–43. Review. doi:10.1007/s00109-014-1182-x.
  • Santoro, N., A. Lisi, D. Pozzi, E. Pasquali, A. Serafino, S. Grimaldi 1997. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochim. Biophys. Acta 1357:281–90. doi:10.1016/S0167-4889(97)00032-3.
  • Seo, N., S. H. Lee, K. W. Ju, J. Woo, B. Kim, S. Kim, J. Jahng, J.-H. Lee. 2018. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve. Neural. Regen. Res. 13:145–53. doi:10.4103/1673-5374.224383.
  • Swigut, T., and J. Wysocka. 2007. H3K27 demethylases, at long last. Cell 131:29–32. Review.doi:10.1016/j.cell.2007.09.026.
  • Vadalà, M., J. C. Morales-Medina, A. Vallelunga, B. Palmieri, C. Laurino, T. Iannitti 2016. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med. 5:3128–39. doi:10.1002/cam4.861.
  • Varani, K., F. Vincenzi, A. Ravani, S., Pasquini, S. Merighi, S. Gessi, S. Setti, M. Cadossi, P.A. Borea, R. Cadossi 2017. Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields. Mediators Inflamm. 2017:2740963.
  • Viganò, M., V. Sansone, M. C. d’Agostino, P. Romeo, C. Perucca Orfei, L. de Girolamo. 2016. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J. Orthop. Surg. Res 11:163. doi:10.1186/s13018-016-0496-5.
  • Walmsley, M., P. D. Katsikis, E. Abney, S. Parry, R. O. Williams, R. N. Maini, and M. Feldmann. 1996. Interleukin-10 inhibition of the progression of established collagen-induced arthritis. Arthritis Rheum. 39:495–503. doi:10.1002/()1529-0131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.