115
Views
2
CrossRef citations to date
0
Altmetric
Articles

The inverse relation between mitochondrial transmembrane potential and proteins α-helix in neuronal-like cells under static magnetic field and the role of VDAC

, , &
Pages 176-182 | Received 09 Aug 2019, Accepted 09 Dec 2019, Published online: 09 Mar 2020

References

  • Anishkina, A., S. H. Loukinb, J. Tengb, and C. Kung. 2014. Feeling the hidden mechanical forces in lipid bilayer is an original sense. PNAS 111:7898–905. doi:10.1073/pnas.1313364111.
  • Bayrhuber, M., T. Meins, M. Habeck, S. Becker, K. Giller, S. Villinger, C. Vonrhein, C. Griesinger, M. Zweckstetter, and K. Zeth. 2008. Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA. 105:15370–75. doi:10.1073/pnas.0808115105.
  • Bowen, K. A., K. Tam, and M. Colombini. 1985. Evidence for titratable gating charges controlling the voltage dependence of the outer mitochondrial membrane channel, VDAC. J. Membr. Biol. 86:51–59. doi:10.1007/BF01871610.
  • Brownell, W. E., F. Qian, and B. Anvar. 2010. Cell membrane tethers generate mechanical force in response to electrical stimulation. Biophys. J. 99:845–52. doi:10.1016/j.bpj.2010.05.025.
  • Calabrò, E. 2016. Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field. Int. J. Radiat. Biol. 92:395–403. doi:10.1080/09553002.2016.1175679.
  • Calabrò, E., S. Condello, M. Currò, N. Ferlazzo, D. Caccamo, S. Magazù, and R. Ientile. 2013a. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics 34:618–29. doi:10.1002/bem.v34.8.
  • Calabrò, E., S. Condello, M. Currò, N. Ferlazzo, M. Vecchio, D. Caccamo, S. Magazù, and R. Ientile. 2013b. 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxid. Med. Cell. Longev. Article ID 414393 2013:8.
  • Calabrò, E., and S. Magazù. 2012. Electromagnetic fields effects on the secondary structure of lysozyme and bioprotective effectiveness of trehalose. Adv. Phys. Chem. Article ID 970369.2012:6.
  • Calabrò, E., and S. Magazù. 2013a. Unfolding and aggregation of myoglobin can be induced by three hours exposure to mobile phone microwaves: A FTIR spectroscopy study. Spectrosc. Lett. 46:583–89. doi:10.1080/00387010.2013.771274.
  • Calabrò, E., and S. Magazù. 2013b. Demicellization of polyethylene oxide in water solution under static magnetic field exposure studied by FTIR spectroscopy. Adv. Phys. Chem. Article ID 485865 2013:8.
  • Calabrò, E., and S. Magazù. 2014a. Non-thermal effects of microwave oven heating on ground beef meat studied in the mid-infrared region by FTIR spectroscopy. Spectrosc. Lett. 47:649–56. doi:10.1080/00387010.2013.828313.
  • Calabrò, E., and S. Magazù. 2014b. Unfolding-induced in haemoglobin by exposure to electromagnetic fields: A FTIR spectroscopy study. Orienta.J.Chem. 30:31–35. doi:10.13005/ojc.
  • Calabrò, E., and S. Magazù. 2015. Fourier self-deconvolution analysis of β-sheet contents in the amide I region of haemoglobin aqueous solutions under exposure to 900 MHz microwaves and bioprotective effectiveness of sugars and salt solutions. Spectrosc. Lett. 48:741–47. doi:10.1080/00387010.2015.1011278.
  • Calabrò, E., and S. Magazù. 2016. Parallel β-sheet vibration band increases with proteins dipole moment under exposure to 1765 MHz microwaves. Bioelectromagnetics 37:99–107. doi:10.1002/bem.v37.2.
  • Calabrò, E., and S. Magazù. 2017. The α-helix alignment of proteins in water solution towards a high frequency electromagnetic field: A FTIR spectroscopy study. Electromagn. Biol. Med. 36:279–88. doi:10.1080/15368378.2017.1328691.
  • Calabrò, E., and S. Magazù. 2018a. Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution. Phys. Lett. A. 382:1389–94. doi:10.1016/j.physleta.2018.03.038.
  • Calabrò, E., and S. Magazù. 2018b. Non-resonant frequencies of electromagnetic fields in α-helices cellular membrane channels. Open Biotechnol. J. 12:86–94. doi:10.2174/1874070701812010086.
  • Calabrò, E., and S. Magazù. 2018c. Resonant interaction between electromagnetic fields and proteins: A possible starting point for the treatment of cancer. Electromagn. Biol. Med. 37:155–68. doi:10.1080/15368378.2018.1499031.
  • Calabrò, E., and S. Magazù. 2019. Infrared spectroscopic demonstration of magnetic orientation in SH-SY5Y neuronal-like cells induced by static or 50 Hz magnetic fields. Int. J. Radiat. Biol. 95:781–87. doi:10.1080/09553002.2019.1571256.
  • Calabrò, E., S. Magazù, and S. Campo. 2012. Microwave-induced increase of amide I and amide II vibration bands and modulating functions of sodium-chloride, sucrose and trehalose aqueous solutions. Res. J. Chem. Environment 16:59–67.
  • Chadwick, P., and F. Lowes. 1998. Magnetic fields on British trains. Ann. Occup. Hyg. 42:331–35. doi:10.1016/S0003-4878(98)00025-8.
  • Colombini, M. 1989. Voltage gating in the mitochondrial channel, VDAC. J. Membr. Biol. 111:103–11. doi:10.1007/BF01871775.
  • Colombini, M. 2012. VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta. 1818:1457–65. doi:10.1016/j.bbamem.2011.12.026.
  • Colombini, M. 2016. The VDAC channel: Molecular basis for selectivity. Biochim. Biophys. Acta. 1863:2498–502. doi:10.1016/j.bbamcr.2016.01.019.
  • Colombini, M., E. Blachly-Dyson, and M. Forte. 1996. VDAC, a channel in the outer mitochondrial membrane. In Ion channels, ed. T. Narahashi., Vol. 4, 169–202. N.Y.: Plenum Press.
  • Dietrich, F. M., and W. L. Jacobs 1999. Survey and assessment of electric and magnetic field public exposure in the transportation environment. Report No PB99-130908. US Department of Transportation, Federal Railroad Administration.
  • Gandhi, C. S., E. Clark, E. Loots, A. Pralle, and E. Y. Isacoff. 2003. The orientation and molecular movement of a K+ channel voltage-sensing domain. Neuron 40:515–25. doi:10.1016/S0896-6273(03)00646-9.
  • Gattin, Z., R. Schneider, Y. Laukat, K. Giller, E. Maier, M. Zweckstetter, C. Griesinger, R. Benz, S. Becker, and A. Lange. 2015. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2. J. Biomol. NMR. 61:311–20. doi:10.1007/s10858-014-9876-5.
  • Gonçalves, R. P., N. Buzhynskyy, V. Prima, J. N. Sturgis, and S. Scheuring. 2007. Supramolecular assembly of VDAC in native mitochondrial outer membranes. J. Mol. Biol. 369:413–18. doi:10.1016/j.jmb.2007.03.063.
  • Hiller, S., R. G. Garces, T. J. Malia, V. Y. Orekhov, M. Colombini, and G. Wagner. 2008. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–10. doi:10.1126/science.1161302.
  • Hiller, S., and G. Wagner. 2009. The role of solution NMR in the structure determinations of VDAC-1 and other membrane proteins. Curr. Opin. Struct. Biol. 19:396–401. doi:10.1016/j.sbi.2009.07.013.
  • Hol, W. G. J., L. M. Halie, and C. Sander. 1981. Dipoles of the α-helix and β-sheet: Their role in protein folding. Nature 294:532–36. doi:10.1038/294532a0.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). 2009. ICNIRP guidelines—on limits of exposure to static magnetic fields. Health. Phys. 96: 504–14. doi:10.1097/01.HP.0000343164.27920.4a.
  • Kuang, Q., P. Purhonen, and H. Hebert. 2015. Structure of potassium channels. Cell. Mol. Life Sci. 72:3677–93. doi:10.1007/s00018-015-1948-5.
  • Kühlbrandt, W. 2015. Structure and function of mitochondrial membrane protein complexes. BMC. Biol. 13:89. doi:10.1186/s12915-015-0201-x.
  • Lee, K. I., H. Rui, R. W. Pastor, and W. Im. 2011. Brownian dynamics simulations of ion transport through the VDAC. Biophys. J. 100:611–19. doi:10.1016/j.bpj.2010.12.3708.
  • Maffeo, C., S. Bhattacharya, J. Yoo, D. Wells, and A. Aksimentiev. 2012. Modeling and simulation of ion channels. Chem. Rev. 112:6250–84. doi:10.1021/cr3002609.
  • Magazù, S., and E. Calabrò. 2011. Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by FTIR spectroscopy. J. Phys. Chem. B. 115:6818–26. doi:10.1021/jp110188k.
  • Magazù, S., E. Calabrò, M. T. Caccamo, and A. Cannuli. 2016. The shielding action of disaccharides for typical proteins in aqueous solution against static, 50 Hz and 1800 MHz frequencies electromagnetic fields. Curr. Chem. Biol. 10:57–64. doi:10.2174/2212796810666160419153722.
  • Magazù, S., E. Calabrò, and S. Campo. 2010. FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J. Phys. Chem. B. 114:12144–49. doi:10.1021/jp104226p.
  • Magazù, S., E. Calabrò, S. Campo, and S. Interdonato. 2012. New insights into bioprotective effectiveness of disaccharides: A FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields. J Biol Phys 38:61–74. doi:10.1007/s10867-010-9209-1.
  • Meng, X.-Y., S. Liu, M. Cui, R. Zhou, and D. E. Logothetis. 2016. The molecular mechanism of opening the helix bundle crossing (HBC) gate of a kir channel. Sci. Rep. 6:29399. doi:10.1038/srep29399.
  • Mertins, B., G. Psakis, and L.-O. Essen. 2014. Voltage-dependent anion channels: The wizard of the mitochondrial outer membrane. Biol. Chem. 395:1435–42. doi:10.1515/hsz-2014-0203.
  • Mertins, B., G. Psakis, W. Grosse, K. C. Back, A. Salisowski, P. Reiss, U. Koert, and L.-O. Essen. 2012. Flexibility of the N-terminal mVDAC1 segment controls the channel’s gating behavior. PLoS. ONE. 7:e47938. doi:10.1371/journal.pone.0047938.
  • NIOSH (National Institute for Occupational Safety and Health—National Institute of Environmental Health Sciences, US Department of Energy). 1996. Questions and answers—EMF in the work-place. electric and magnetic fields associated with the use of electric power. Washinton, DC: National Institute of Environmental Health Sciences.
  • Reina, S., A. Magrì, M. Lolicato, F. Guarino, A. Impellizzeri, E. Maier, R. Benz, M. Ceccarelli, V. De Pinto, and A. Messina. 2013. Deletion of β-strands 9 and 10 converts VDAC1 voltage-dependence in an asymmetrical process. Biochim. Biophys. Acta. 1827:793–805. doi:10.1016/j.bbabio.2013.03.007.
  • Rostovtseva, T., and M. Colombini. 1997. VDAC channels mediate and gate the flow of ATP: Implications for the regulation of mitochondrial function. Biophys. J. 72:1954–62. doi:10.1016/S0006-3495(97)78841-6.
  • Schredelseker, J., A. Paz, C. J. Lopez, C. Altenbach, C. S. Leung, M. K. Drexler, J. N. Chen, W. L. Hubbell, and J. Abramson. 2014. High resolution structure and double electron–electron resonance of the zebrafish voltage-dependent anion channel 2 reveal an oligomeric population. J. Biol. Chem. 289:12566–77. doi:10.1074/jbc.M113.497438.
  • Shoshan-Barmatz, V., and D. Ben-Hail. 2012. VDAC, a multifunctional mitochondrial protein as a pharmacological target. Mitochondrion 12:24–34. doi:10.1016/j.mito.2011.04.001.
  • Shoshan-Barmatz, V., V. De Pinto, M. Zweckstetter, Z. Raviv, N. Keinan, and N. Arbel. 2010. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects. Med. 31:227–85. doi:10.1016/j.mam.2010.03.002.
  • Song, J., C. Midson, E. Blachly-Dyson, M. Forte, and M. Colombini. 1998. The sensor regions of VDAC are translocated from within the membrane to the surface during the gating processes. Biophys. J. 74:2926–44. doi:10.1016/S0006-3495(98)78000-2.
  • Wada, A. 1976. The alpha-helix as an electric macro-dipole. Adv. Biophys. 9:l–63.
  • WHO (World Health Organization). 2006. Framework for developing health-based EMF standards. Geneva: World Health Organization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.