105
Views
3
CrossRef citations to date
0
Altmetric
Articles

Chromosome aberration in typical biological systems under exposure to low- and high-intensity magnetic fields

, &
Pages 97-108 | Received 10 Dec 2019, Accepted 17 Jan 2020, Published online: 05 Mar 2020

References

  • Ayrapetyan, S. N., and M. S. Markov. 2006. Bioelectromagnetics-Current concepts. The Netherlands: Springer. ISBN-13 978-1-4020-4278-2 (e-book).
  • Blake, R. D., and S. G. Delcourt. 1998. Thermal stability of DNA. Nucleic Acid. Res. 26:3323–32. doi:10.1093/nar/26.14.3323.
  • Blank, M. 2008. Protein and DNA reactions stimulated by electromagnetic fields. Electromagn. Biol. Med. 27:3–23. doi:10.1080/15368370701878820.
  • Borrego-Soto, G., R. Ortiz-López, and A. Rojas-Martínez. 2015. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet. Mol. Biol. 38:420–32. doi:10.1590/S1415-475738420150019.
  • Calabrò, E. 2016. Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field. Int. J. Radiat. Biol. 92:395–403. doi:10.1080/09553002.2016.1175679.
  • Calabrò, E., S. Condello, M. Currò, N. Ferlazzo, D. Caccamo, S. Magazù, and R. Ientile. 2013a. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics 34:618–29. doi:10.1002/bem.v34.8.
  • Calabrò, E., S. Condello, M. Currò, N. Ferlazzo, M. Vecchio, D. Caccamo, S. Magazù, and R. Ientile. 2013b. 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxid. Med. Cell. Longev. 2013:8. Article ID 414393. doi:10.1155/2013/414393.
  • Calabrò, E., and S. Magazù. 2013. Demicellization of polyethylene oxide in water solution under static magnetic field exposure studied by FTIR spectroscopy. Adv. Phys. Chem. 2013:8. Article ID 485865. doi: 10.1155/2013/485865.
  • Calabrò, E., and S. Magazù. 2014a. Non-thermal effects of microwave oven heating on ground beef meat studied in the mid-infrared region by FTIR spectroscopy. Spectrosc Lett. Int. J. Rapid Commun. 47:649–56. doi:10.1080/00387010.2013.828313.
  • Calabrò, E., and S. Magazù. 2014b. Unfolding-induced in haemoglobin by exposure to electromagnetic fields: A FTIR spectroscopy study. Orient. J. Chem. 30:31–35. doi:10.13005/ojc.
  • Calabrò, E., and S. Magazù. 2015. Fourier –self –deconvolution analysis of β-sheet contents in the amide I region of haemoglobin aqueous solutions under exposure to 900 MHz microwaves and bioprotective effectiveness of sugars and salt solutions. Spectrosc Lett. Int. J. Rapid Commun. 48:741–47. doi:10.1080/00387010.2015.1011278.
  • Calabrò, E., and S. Magazù. 2016. Parallel β-sheet vibration band increases with proteins dipole moment under exposure to 1765 MHz microwaves. Bioelectromagnetics 37:99–107. doi:10.1002/bem.v37.2.
  • Calabrò, E., and S. Magazù. 2017a. Induced-orientation of nitrogen monoxide and azide ion vibrations in human hemoglobin in bidistilled water solution under a static magnetic field. Bioelectromagnetics 38:447–55. doi:10.1002/bem.v38.6.
  • Calabrò, E., and S. Magazù. 2017b. The α-helix alignment of proteins in water solution towards a high frequency electromagnetic field: A FTIR spectroscopy study. Electromagn. Biol. Med. 36:279–88. doi:10.1080/15368378.2017.1328691.
  • Calabrò, E., and S. Magazù. 2018. Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution. Phys. Lett. A 382:1389–94. doi:10.1016/j.physleta.2018.03.038.
  • Calabrò, E., and S. Magazù. 2019. Infrared spectroscopic demonstration of magnetic orientation in SH-SY5Y neuronal-like cells induced by static or 50 Hz magnetic fields. Int. J. Radiat. Biol. 95:781–87. doi:10.1080/09553002.2019.1571256.
  • Calabrò, E., S. Magazù, and S. Campo. 2012. Microwave-induced increase of amide I and amide II vibration bands and modulating functions of sodium-chloride, sucrose and trehalose aqueous solutions: The case study of haemoglobin. Res. J. Chem. Environ. 16:59–67.
  • Firbas, P., and T. Amon. 2014. Chromosome damage studies in the onion plant Allium cepa L. Caryologia 67:25–35. doi:10.1080/00087114.2014.891696.
  • Goswami, H. K. 1973. Biomagnetic effects on plant chromosomes. Nucleus 16:41–42.
  • Goswami, H. K. 1977. Changes in chromosome morphology due to magnetism. Cytologia 42:639–44. doi:10.1508/cytologia.42.639.
  • Goswami, H. K., and N. Dave. 1975. Chromosomal aberration in Pisum sativum by magnetic field, X-rays and urea and their restitution in sucrose. Cytologia 40:53–60. doi:10.1508/cytologia.40.53.
  • Goswami, H. K., S. Tripathi, and A. P. V. Rajurs. 1983. Variable responses of chromosomes to magnetism. Bionature 3:11–21.
  • Ilic, B., Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. G. Craighead. 2005. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 5:925–29. doi:10.1021/nl050456k.
  • International Commission on Non-Ionizing Radiation Protection. 1998. 9 guidelines for limiting exposure to time -varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74: 494–522.
  • International Commission on Non-Ionizing Radiation Protection. 2009. ICNIRP guidelines on limits of exposure to static magnetic fields. Health Phys. 96: 504–14. doi:10.1097/01.HP.0000343164.27920.4a.
  • International Commission on Non-Ionizing Radiation Protection. 2010. ICNIRP guidelines for limiting exposure to time-varying electric and magnetic fields. Health Phys. 99: 818–36. doi:10.1097/HP.0b013e3181f06c86.
  • International Commission on Non-Ionizing Radiation Protection. 2014. ICNIRP guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time-varying magnetic fields below 1 Hz. Health Phys. 106: 418–25. doi:10.1097/HP.0b013e31829e5580.
  • Kauppinen, J. K., D. J. Moffatt, H. H. Mantsch, and D. G. Cameron. 1981. Fourier self-deconvolution—A method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35:271–76. doi:10.1366/0003702814732634.
  • Lahijani, M. S., and K. Sajadi. 2004. Development of preincubated chicken eggs following exposure to 50 Hz electromagnetic fields with 1.33-7.32 mT flux densities. Indian J. Exp. Biol. 42:858–65.
  • Lai, H., and N. P. Singh. 2004. Magnetic-field–induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112:687–94. doi:10.1289/ehp.6355.
  • Lai, H. C., and N. P. Singh. 2010. Medical applications of electromagnetic fields. IOP Conf. Ser. Earth Environ. Sci. 10:012006. doi:10.1088/1755-1315/10/1/012006.
  • Lomax, M. E., L. K. Folkes, and P. O’Neill. 2013. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Oncol. 25:578–85. doi:10.1016/j.clon.2013.06.007.
  • Magazù, S., and E. Calabrò. 2011. Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by FTIR spectroscopy. J. Phys. Chem. B 115:6818–26. doi:10.1021/jp110188k.
  • Magazù, S., E. Calabrò, M. T. Caccamo, and A. Cannuli. 2016. The shielding action of disaccharides for typical proteins in aqueous solution against static, 50 Hz and 1800 MHz frequencies electromagnetic fields. Curr. Chem. Biol. 10:57–64. doi:10.2174/2212796810666160419153722.
  • Magazù, S., E. Calabrò, S. Campo, and S. Interdonato. 2012. New insights into bioprotective effectiveness of disaccharides: A FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields. J Biol Phys 38:61–74. doi:10.1007/s10867-010-9209-1.
  • Mashevich, M., D. Folkman, A. Kesar, A. Barbul, R. Korenstein, E. Jerby, and L. Avivi 2003. Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 24:82–90. doi:10.1002/bem.10086.
  • Miyakoshi, J. 2006. The review of cellular effects of a static magnetic field. Sci. Technol. Adv. Mater. 7:305–07. doi:10.1016/j.stam.2006.01.004.
  • Parker, F. S. 1971. Applications of infrared spectroscopy in biochemistry,biology and medicine, vol. 14, 601. New York: Plenum Press.
  • Pethig, R. R. 2017. Dielectrophoresis: Theory, methodology and biological applications. NY: Wiley and Sons.
  • Pooam, M., M. Nakayama, C. Nishigaki, and H. Miyata. 2017. Effect of 50-Hz sinusoidal magnetic field on the production of superoxide anion and the expression of heat-shock protein 70 in RAW264 cells. Int. J. Chem. 9:23–36. doi:10.5539/ijc.v9n2p23.
  • Reisz, J. A., N. Bansal, J. Qian, W. Zhao, and C. M. Furdui. 2014. Effects of ionizing radiation on biological molecules—Mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal. 21:260–92. doi:10.1089/ars.2013.5489.
  • Rigas, B., S. Morgello, I. S. Goldman, and P. T. T. Wong. 1990. Human colorectal cancers display abnormal Fourier-transform IR spectra. Proc. Natl. Acad. Sci. U.S.A. 87:8140–44. doi:10.1073/pnas.87.20.8140.
  • Sensale, S., Z. Peng, and H. C. Chang. 2018. Acceleration of DNA melting kinetics using alternating electric fields. J. Chem. Phys. 149:085102-1-8. doi:10.1063/1.5039887.
  • Stellwagen, E., J. M. Muse, and N. C. Stellwagen. 2011. Monovalent cation size and DNA conformational stability. Biochemistry 50:3084–94. doi:10.1021/bi1015524.
  • Takashima, S. 1963. Dielectric dispersion of DNA. J. Mol. Biol. 7:455–67. doi:10.1016/S0022-2836(63)80094-7.
  • Takashima, S., and K. Yamaoka. 1999. The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database. Biophys. Chem. 80:153–63. doi:10.1016/S0301-4622(99)00072-1.
  • Tan, Z. J., and S. J. Chen. 2006. Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length. Biophys. J. 90:1175–90. doi:10.1529/biophysj.105.070904.
  • Tsuboi, M. 1957. Vibrational spectra of phosphite and hypophosphite anions, and the characteristic frequencies of PO3– And PO2- groups. J. Am. Chem. Soc. 79:1351–54. doi:10.1021/ja01563a026.
  • Watson, J. D., and F. H. C. Crick. 1953. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171:737–38. doi:10.1038/171737a0.
  • Wildes, A., N. Theodorakopoulos, J. Valle-Orero, S. Cuesta-López, J.-L. Garden, and M. Peyrard. 2011a. Structural correlations and melting of B-DNA fibers. Phys. Rev. E 83:061923. doi:10.1103/PhysRevE.83.061923.
  • Wildes, A., N. Theodorakopoulos, J. Valle-Orero, S. Cuesta-López, J.-L. Garden, and M. Peyrard. 2011b. The thermal denaturation of DNA studied with neutron scattering. Phys. Rev. Lett. 106:048101. doi:10.1103/PhysRevLett.106.048101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.