261
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium

, , &
Pages 183-195 | Received 28 Oct 2019, Accepted 05 Apr 2020, Published online: 15 May 2020

References

  • Abdelhalim, M. A., M. M. Mady, and M. M. Ghannam. 2011. Rheological and dielectric properties of different gold nanoparticle sizes. Lipids Health Dis. 10:208. doi:10.1186/1476-511X-10-208.
  • Alkilany, A. M., and C. J. Murphy. 2010. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res. 12:2313–33. doi:10.1007/s11051-010-9911-8.
  • Amini, S. M., S. Kharrazi, and M. R. Jaafari. 2017. Radio frequency hyperthermia of cancerous cells with gold nanoclusters: An in vitro investigation. Gold Bull. 50:43–50. doi:10.1007/s13404-016-0192-6.
  • Andreuccetti, D., M. Bini, A. Ignesti, R. Olmi, N. Rubino, and R. Vanni. 1988. Use of polyacrylamide as a tissue-equivalent material in the microwave range. IEEE Trans. Biomed. Eng. 35:275–77. doi:10.1109/10.1377.
  • Bakht, M. K., M. Sadeghi, M. Pourbaghi-Masouleh, and C. Tenreiro. 2012. Scope of nanotechnology-based radiation therapy and thermotherapy methods in cancer treatment. Curr. Cancer Drug Targets 12:998–1015. doi:10.2174/156800912803251216.
  • Brancolini, G., A. Corazza, M. Vuano, F. Fogolari, M. C. Mimmi, V. Bellotti, M. Stoppini, S. Corni, and G. Esposito. 2015. Probing the influence of citrate-capped gold nanoparticles on an amyloidogenic protein. ACS Nano 9:2600–13. doi:10.1021/nn506161j.
  • Cardinal, J., J. R. Klune, E. Chory, G. Jeyabalan, J. S. Kanzius, M. Nalesnik, and D. A. Geller. 2008. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 144:125–32. doi:10.1016/j.surg.2008.03.036.
  • Cherukuri, P., E. S. Glazer, and S. A. Curley. 2010. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62:339–45. doi:10.1016/j.addr.2009.11.006.
  • Corr, S. J., M. Raoof, Y. Mackeyev, S. Phounsavath, M. A. Cheney, B. T. Cisneros, M. Shur, M. Gozin, P. J. McNally, L. J. Wilson, et al. 2012. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field. J. Phys. Chem. C Nanomater. Interfaces 116:24380–89. doi:10.1021/jp309053z.
  • Crezee, J., R. S. Kaatee, and J. F. van der Koijk. 1999. Spatial steering with quadruple electrodes in 27 MHz capacitively coupled interstitial hyperthermia. Int. J. Hyperthermia 15:145–56. doi:10.1080/026567399285792.
  • Curley, S. A., P. Cherukuri, and K. Briggs. 2008. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Therm. Oncol. 7:13–26.
  • Das, S. K., C. Dickinson, F. Lafir, D. F. Brougham, and E. Marsili. 2012. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 14:1322–34. doi:10.1039/c2gc16676c.
  • Fasla, B., R. Benmouna, and M. Benmouna. 2010. Modeling of tumor’s tissue heating by nanoparticles. J. Appl. Phys. 108:124703. doi:10.1063/1.3525089.
  • Franconi, C., L. Raganella, C. A. Tiberio, and L. Begnozzi. 1991. Low-frequency RF hyperthermia: Iv—a 27 MHz hybrid applicator for localized deep tumor heating. IEEE Trans. Biomed. Eng. 38:287–93. doi:10.1109/10.133211.
  • Franconi, C., J. Vrba Jr., and F. Montecchia. 1993. 27 MHz hybrid evanescent-mode applicators (HEMA) with flexible heating field for deep and safe subcutaneous hyperthermia. Int. J. Hyperthermia 9:655–73. doi:10.3109/02656739309032054.
  • Gabriel, C. 1996. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Texas, USA: Brooks Air Force Base, Texas (USA).
  • Hanson, G. W., and S. K. Patch. 2009. Optimum electromagnetic heating of nanoparticle thermal contrast agents at rf frequencies. J. Appl. Phys. 106:054309. doi:10.1063/1.3204653.
  • Hehr, T., P. Wust, M. Bamberg, and W. Budach. 2003. Current and potential role of thermoradiotherapy for solid tumours. Onkologie 26:295–302. doi:10.1159/000071628.
  • Hiraoka, M., M. Mitsumori. Hiroi N., Ohno S., Tanaka Y., Kotsuka Y., Sugimachi K. 2000. Development of RF and microwave heating equipment and clinical applications to cancer treatment in Japan. IEEE TIEEE Trans. Microwave Theory Tech. 48:1789–99. doi:10.1109/22.883855.
  • Kaur, P., M. L. Aliru, A. S. Chadha, A. Asea, and S. Krishnan. 2016. Hyperthermia using nanoparticles–Promises and pitfalls. Int. J. Hyperthermia 32:76–88. doi:10.3109/02656736.2015.1120889.
  • Kim, K. S., and S. Y. Lee. 2015. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. Int. J. Hyperthermia 31:831–39. doi:10.3109/02656736.2015.1096968.
  • Krishnan, S., P. Diagaradjane, and S. H. Cho. 2010. Nanoparticle-mediated thermal therapy: Evolving strategies for prostate cancer therapy. Int. J. Hyperthermia 26:775–89. doi:10.3109/02656736.2010.485593.
  • Li, D., Y. S. Jung, S. Tan, H. K. Kim, E. Chory, and D. A. Geller. 2011. Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles. J Colloid Interface Sci. 358:47–53. doi:10.1016/j.jcis.2011.01.059.
  • Liu, H., Y. Fan, J. Wang, Z. Song, H. Shi, R. Han, Y. Sha, and Y. Jiang. 2015a. Intracellular temperature sensing: An ultra-bright luminescent nanothermometer with non-sensitivity to pH and ionic strength. Sci. Rep. 5:14879. doi:10.1038/srep14879.
  • Liu, X., H.-J. Chen, X. Chen, Y. Alfadhl, J. Yu, and D. Wen. 2015b. Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development. Appl. Phys. Rev. 2:011103. doi:10.1063/1.4915002.
  • Liu, X., H.-J. Chen, X. Chen, C. Parini, and D. Wen. 2012. Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies. Nanoscale 4:3945–53. doi:10.1039/c2nr30166k.
  • Liu, X. M., H.-J. Chen, X. Chen, Y. Alfadhl, J. Yu, and D. Wen. 2014. Electromagnetic heating effect of aggregated gold nanoparticle colloids. J. Appl. Phys. 115:094903. doi:10.1063/1.4867615.
  • McCoy, R. S., S. Choi, G. Collins, B. J. Ackerson, and C. J. Ackerson. 2013. Superatom paramagnetism enables gold nanocluster heating in applied radiofrequency fields. ACS Nano 7:2610–16. doi:10.1021/nn306015c.
  • Moran, C. H., S. M. Wainerdi, T. K. Cherukuri, C. Kittrell, B. J. Wiley, N. W. Nicholas, S. A. Curley, J. S. Kanzius, and P. Cherukuri. 2010. Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2:400–05. doi:10.1007/s12274-009-9048-1.
  • Nordebo, S., M. Dalarsson, Y. Ivanenko, D. Sjöberg, and R. Bayford. 2017. On the physical limitations for radio frequency absorption in gold nanoparticle suspensions. J. Phys. D: Appl. Phys. 50:155401. doi:10.1088/1361-6463/aa5a89.
  • Paglione, R., F. Sterzer, J. Mendecki, E. Friedenthal, and C. Botstein. 1981. 27 MHz ridged waveguide applicators for localized hyperthermia treatment of deep-seated malignant tumors. Microwave J. 24:71–80.
  • Raoof, M., S. J. Corr, C. Zhu, B. T. Cisneros, W. D. Kaluarachchi, S. Phounsavath, L. J. Wilson, and S. A. Curley. 2014. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomedicine 10:1121–30. doi:10.1016/j.nano.2014.03.004.
  • Shen, C. C., W. L. Tseng, and Hsieh M. M. 2009. Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. J. Chromatogr. A 1216:288–93. doi:10.1016/j.chroma.2008.11.044.
  • Shih, Y. C., C. Y. Ke, Yu C. J., Lu C. Y., and Tseng W. L. 2014. Combined tween 20-stabilized gold nanoparticles and reduced graphite oxide-Fe3O4 nanoparticle composites for rapid and efficient removal of mercury species from a complex matrix. ACS Appl. Mater. Interfaces 6:17437–45. doi:10.1021/am5033988.
  • Smith, B. R., and S. S. Gambhir. 2017. Nanomaterials for In Vivo Imaging. Chem. Rev. 117:901–86. doi:10.1021/acs.chemrev.6b00073.
  • Stauffer, P. R. 2000. Thermal therapy techniques for skin and superficial tissue disease. Critical Reviews, Matching the Energy Source to the Clinical Need, 75.
  • Stauffer, P. R. 2005. Evolving technology for thermal therapy of cancer. Int. J. Hyperthermia 21:731–44. doi:10.1080/02656730500331868.
  • Sun, Y., J. Wu, C. Wang, and Y. Zhao, Q. Lin. 2017. Tunable near-infrared fluorescent gold nanoclusters: Temperature sensor and targeted bioimaging. New J. Chem. 41:5412–19. doi:10.1039/C7NJ00175D.
  • Vander Zee, J., and D. Gonzalez. 2002. The Dutch deep hyperthermia trial: Results in cervical cancer. Int. J. Hyperthermia 18:1–12. doi:10.1080/02656730110091919.
  • Visser, A. G., I. K. K. Deurloo, P. C. Levendag, A. C. C. Ruifrok, B. Cornet, and G. C. van Rhoon. 1989. An interstitial hyperthermia system at 27 MHz. Int. J Hyperthermia 5:265–76. doi:10.3109/02656738909140452.
  • Wust, P., B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlaq. 2002. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3:487–97. doi:10.1016/S1470-2045(02)00818-5.
  • Zhang, X. D., Z. Luo, J. Chen, S. Song, X. Yuan, X. Shen, H. Wang, Y. Sun, K. Gao, L. Zhang, et al. 2015. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 5:8669. doi:10.1038/srep08669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.