281
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Low frequency vortex magnetic field reduces amyloid β aggregation, increase cell viability and protect from amyloid β toxicity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 191-200 | Received 12 Mar 2020, Accepted 18 Sep 2020, Published online: 12 Oct 2020

References

  • Arendash, G. W., T. Mori, M. Dorsey, R. Gonzalez, N. Tajiri, and C. Borlongan. 2012. Electromagnetic treatment to old Alzheimer’s mice reverses beta-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS One 7:e35751. doi:10.1371/journal.pone.0035751.
  • Arendash, G. W., J. Sanchez-Ramos, T. Mori, M. Mamcarz, X. Lin, M. Runfeldt, L. Wang, G. Zhang, V. Sava, J. Tan, et al. 2010. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J. Alzheimers Dis. 19:191–210. doi:10.3233/JAD-2010-1228.
  • Benfante, R., R. A. Antonini, N. Kuster, J. Schuderer, C. Maercker, F. Adlkofer, F. Clementi, and D. Fornasari. 2008. The expression of PHOX2A, PHOX2B and of their target gene dopamine-beta-hydroxylase (DbetaH) is not modified by exposure to extremely-low-frequency electromagnetic field (ELF-EMF) in a human neuronal model. Toxicol. In Vitro 22:1489–95. doi:10.1016/j.tiv.2008.05.003.
  • Benzi, R., A. Sutera, and A. Vulpiani. 1981. The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14:L453. doi:10.1088/0305-4470/14/11/006.
  • Budi, A., F. S. Legge, H. Treutlein, and I. Yarovsky. 2005. Electric field effects on insulin chain-B conformation. J. Phys. Chem. B 109:22641–48. doi:10.1021/jp052742q.
  • Calabro, E., S. Condello, M. Curro, N. Ferlazzo, M. Vecchio, D. Caccamo, S. Magazù, and R. Ientile. 2013a. 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxid. Med. Cell. Longev. 2013:414393.
  • Calabro, E., S. Condello, M. Curro, N. Ferlazzo, D. Caccamo, S. Magazù, and R. Ientile. 2013b. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics 34:618–29. doi:10.1002/bem.21815.
  • Calabro, E., and S. Magazu. 2019. Infrared spectroscopic demonstration of magnetic orientation in SH-SY5Y neuronal-like cells induced by static or 50 Hz magnetic fields. Int. J. Radiat. Biol. 95:781–87. doi:10.1080/09553002.2019.1571256.
  • Capetillo-Zarate, E., L. Gracia, D. Tampellini, and G. K. Gouras. 2012. Intraneuronal Abeta accumulation, amyloid plaques, and synapse pathology in Alzheimer’s disease. Neurodegener Dis. 10:56–59. doi:10.1159/000334762.
  • Capetillo-Zarate, E., L. Gracia, F. Yu, J. R. Banfelder, M. T. Lin, D. Tampellini, and G. K. Gouras. 2011. High-resolution 3D reconstruction reveals intra-synaptic amyloid fibrils. Am. J. Pathol. 179:2551–58. doi:10.1016/j.ajpath.2011.07.045.
  • Cerf, E., R. Sarroukh, S. Tamamizu-Kato, L. Breydo, S. Derclaye, Y. Dufrêne, V. Narayanaswami, E. Goormaghtigh, J.-M. Ruysschaert, V. Raussens, et al. 2009. Antiparallel beta-sheet: A signature structure of the oligomeric amyloid beta-peptide. Biochem. J. 421:415–23. doi:10.1042/BJ20090379.
  • Chang, I. F., and H. Y. Hsiao. 2005. Induction of RhoGAP and pathological changes characteristic of Alzheimer’s disease by UAHFEMF discharge in rat brain. Curr. Alzheimer Res. 2:559–69. doi:10.2174/156720505774932269.
  • Cooper, M. S. 1995. Membrane potential perturbations induced in tissue cells by pulsed electric fields. Bioelectromagnetics 16:255–62. doi:10.1002/bem.2250160408.
  • Córdova-Fraga, T., A. Espinoza-Garc’ia, G. Barbosa-Sabanero, H. A. Pérez-Olivas, E. F. Rosas-Padilla, J. C. Martínez-Espinosa, and J. J. Bernal Alvarado. 2014. Increasing survival study of kidney HEK-293T cells in magnetic field vortices and nano-fluid. IJEIT 4:222–225.
  • Darwish, S. M., A. S. Darwish, and D. S. Darwish. 2020. An extremely low-frequency magnetic field can affect CREB protein conformation which may have a role in neuronal activities including memory. J. Phys. Commun. 4:015009. doi:10.1088/2399-6528/ab66d2.
  • Dragicevic, N., P. C. Bradshaw, M. Mamcarz, X. Lin, L. Wang, C. Cao, and G. W. Arendash. 2011. Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer’s transgenic mice and normal mice: A mechanism for electromagnetic field-induced cognitive benefit? Neuroscience 185:135–49. doi:10.1016/j.neuroscience.2011.04.012.
  • Falone, S., M. R. Grossi, B. Cinque, B. D’Angelo, E. Tettamanti, A. Cimini, C. Di Ilio, and F. Amicarelli. 2007. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int. J. Biochem. Cell Biol. 39:2093–106. doi:10.1016/j.biocel.2007.06.001.
  • Foroozandeh, E., P. Derakhshan-Barjoei, and M. Jadidi. 2013. Toxic effects of 50 Hz electromagnetic field on memory consolidation in male and female mice. Toxicol. Ind. Health 29:293–99. doi:10.1177/0748233711433931.
  • Fregni, F., and A. Pascual-Leone. 2007. Technology insight: Noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3:383–93. doi:10.1038/ncpneuro0530.
  • Gluckman, B. J., T. I. Netoff, E. J. Neel, W. L. Ditto, M. L. Spano, and S. J. Schiff. 1996. Stochastic resonance in a neuronal network from mammalian brain. Phys. Rev. Lett. 77:4098–101. doi:10.1103/PhysRevLett.77.4098.
  • Gorantla, N. V., V. G. Landge, P. G. Nagaraju, C. G. Priyadarshini, E. Balaraman, and S. Chinnathambi. 2019. Molecular cobalt(II) complexes for tau polymerization in Alzheimer’s disease. ACS Omega 4:16702–14. doi:10.1021/acsomega.9b00692.
  • Guerra, A., F. Assenza, F. Bressi, F. Scrascia, M. Del Duca, F. Ursini, S. Vollaro, L. Trotta, M. Tombini, C. Chisari, and F. Ferreri. 2011. Transcranial magnetic stimulation studies in Alzheimer’s disease. Int. J. Alzheimers Dis. 2011:263817.
  • Harper, J. D., and P. T. Lansbury Jr. 1997. Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66:385–407. doi:10.1146/annurev.biochem.66.1.385.
  • Hasanzadeh, H., M. Rezaie-Tavirani, S. S. Seyyedi, H. Zali, S. H. Keshel, M. Jadidi, and A. Abedelahi. 2014. Effect of ELF-EMF exposure on human neuroblastoma cell line: A proteomics analysis. Iran J. Cancer Prev. 7:22–27.
  • Heffern, M. C., P. T. Velasco, L. M. Matosziuk, J. L. Coomes, C. Karras, M. A. Ratner, W. L. Klein, A. L. Eckermann, and T. J. Meade. 2014. Modulation of amyloid-beta aggregation by histidine-coordinating Cobalt(III) Schiff base complexes. Chembiochem 15:1584–89. doi:10.1002/cbic.201402201.
  • Hill, A., R. J. Sedman, V. L. Allen, P. Williams, M. Paoli, L. Adler-Abramovich, E. Gazit, L. Eaves, and S. Tendler. 2007. Alignment of aromatic peptide tubes in strong magnetic fields. Adv. Mater. 19:4474–79. doi:10.1002/adma.200700590.
  • Honig, B. H., W. L. Hubbell, and R. F. Flewelling. 1986. Electrostatic interactions in membranes and proteinS. Annu. Rev. Biophys. Biophys. Chem. 15:163–93. doi:10.1146/annurev.bb.15.060186.001115.
  • Jeong, Y. J., G. Y. Kang, J. H. Kwon, H.-D. Choi, J.-K. Pack, N. Kim, Y.-S. Lee, H.-J. Lee. 2015. 1950 MHz electromagnetic fields ameliorate abeta pathology in Alzheimer’s disease mice. Curr. Alzheimer Res. 12:481–92. doi:10.2174/156720501205150526114448.
  • Kim, D. H., E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, V. Novosad. 2010. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9:165–71. doi:10.1038/nmat2591.
  • Ladiwala, A. R., M. Bhattacharya, J. M. Perchiacca, P. Cao, D. P. Raleigh, A. Abedini, A. M. Schmidt, J. Varkey, R. Langen, and P. M. Tessier. 2012. Rational design of potent domain antibody inhibitors of amyloid fibril assembly. Proc. Natl. Acad. Sci. U.S.A. 109:19965–70. doi:10.1073/pnas.1208797109.
  • Li, Y., C. Zhang, and T. Song. 2014. Disturbance of the magnetic field did not affect spatial memory. Physiol. Res. 63:377.
  • Liebl, M. P., J. Windschmitt, A. S. Besemer, A.-K. Schäfer, H. Reber, C. Behl, and A. M. Clement. 2015. Low-frequency magnetic fields do not aggravate disease in mouse models of Alzheimer’s disease and amyotrophic lateral sclerosis. Sci. Rep. 5:8585. doi:10.1038/srep08585.
  • Liu, T., S. Wang, L. He, and K. Ye. 2008. Chronic exposure to low-intensity magnetic field improves acquisition and maintenance of memory. Neuroreport 19:549–52. doi:10.1097/WNR.0b013e3282f8b1a0.
  • Lopes, M. A., A. V. Goltsev, K.-E. Lee, and J. F. F. Mendes. 2013. Stochastic resonance as an emergent property of neural networks. AIP Conf. Proc. 1510:202–06.
  • Luukkonen, J., A. Liimatainen, A. Hoyto, J. Juutilainen, and J. Naarala. 2011. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells. PLoS One 6:e18021. doi:10.1371/journal.pone.0018021.
  • Marchesi, N., C. Osera, L. Fassina, M. Amadio, F. Angeletti, M. Morini, G. Magenes, L. Venturini, M. Biggiogera, and G. Ricevuti, et al. 2014. Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J. Cell. Physiol. 229:1776–86. doi:10.1002/jcp.24631.
  • Marshall, K. E., R. Marchante, W. F. Xue, and L. C. Serpell. 2014. The relationship between amyloid structure and cytotoxicity. Prion 8:192–96. doi:10.4161/pri.28860.
  • Masters, C. L., G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther. 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 82:4245–49. doi:10.1073/pnas.82.12.4245.
  • Melchor, M.-H., F.-G. Susana, G.-S. Francisco, B. Hiram I., R.-F. Norma, L.-R. Jorge A., L.-C. Perla Y., and B.-I. Gustavo. 2018. Fullerenemalonates inhibit amyloid beta aggregation, in vitro and in silico evaluation. RSC Adv. 8:39667–77. doi:10.1039/C8RA07643J.
  • Naiki, H., K. Higuchi, M. Hosokawa, and T. Takeda. 1989. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T. Anal. Biochem. 177:244–49. doi:10.1016/0003-2697(89)90046-8.
  • Osera, C., M. Amadio, S. Falone, L. Fassina, G. Magenes, F. Amicarelli, G. Ricevuti, S. Govoni, and A. Pascale. 2015. Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity. Bioelectromagnetics 36:219–32. doi:10.1002/bem.21900.
  • Osera, C., L. Fassina, M. Amadio, L. Venturini, E. Buoso, G. Magenes, S. Govoni, G. Ricevuti, and A. Pascale. 2011. Cytoprotective response induced by electromagnetic stimulation on SH-SY5Y human neuroblastoma cell line. Tissue Eng. Part A 17:2573–82. doi:10.1089/ten.tea.2011.0071.
  • Pennisi, G., R. Ferri, G. Lanza, M. Cantone, M. Pennisi, V. Puglisi, G. Malaguarnera, and R. Bella. 2011. Transcranial magnetic stimulation in Alzheimer’s disease: A neurophysiological marker of cortical hyperexcitability. J. Neural Transm. 118:587–98. doi:10.1007/s00702-010-0554-9.
  • Pérez, H., T. Cordova-Fraga, S. López-Briones, J. C. Martínez-Espinosa, E. F. Rosas, A. Espinoza, J. C. Villagómez-Castro, M. Sosa, S. Topsu, and J. J. Bernal-Alvarado. 2013. Portable device for magnetic stimulation: Assessment survival and proliferation in human lymphocytes. Rev. Sci. Instrum. 84:094701. doi:10.1063/1.4819796.
  • Pethig, R., and D. B. Kell. 1987. The passive electrical properties of biological systems: Their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32:933–70.
  • Pozueta, J., R. Lefort, and M. L. Shelanski. 2013. Synaptic changes in Alzheimer’s disease and its models. Neuroscience 251:51–65.
  • Pryor, N. E., M. A. Moss, and C. N. Hestekin. 2012. Unraveling the early events of amyloid-beta protein (Abeta) aggregation: Techniques for the determination of Abeta aggregate size. Int. J. Mol. Sci. 13:3038–72. doi:10.3390/ijms13033038.
  • Reale, M., M. A. Kamal, A. Patruno, E. Costantini, C. D’Angelo, M. Pesce, and N. H. Greig. 2014. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: Implications regarding oxidative stress and neurodegeneration. PLoS One 9:e104973. doi:10.1371/journal.pone.0104973.
  • Reitz, J. R., F. J. Milford, and R. W. Christy. 2001. Fundations of electromagnétic theory. 4th ed. C. G. Martínez Ávila, Trans. Addison-Wesley, USA.
  • Resnick, R., D. Halliday, and K. S. Krane. 2003. Física 2, Vol. 2, 5th ed. México: D.F.
  • Rodin, M., and G. Volk. 2010. The Rodin number map and Rodin coil. Proc. Nat. Philos. Alliance 6:1-7.
  • Saikia, J., G. Pandey, S. Sasidharan, F. Antony, H. B. Nemade, S. Kumar, N. Chaudhary, and V. Ramakrishnan. 2019. Electric field disruption of amyloid aggregation: Potential noninvasive therapy for Alzheimer’s disease. ACS Chem. Neurosci. 10:2250–62. doi:10.1021/acschemneuro.8b00490.
  • Sala, C., and M. Segal. 2014. Dendritic spines: The locus of structural and functional plasticity. Physiol. Rev. 94:141–88. doi:10.1152/physrev.00012.2013.
  • Selkoe, D. J. 2002. Alzheimer’s disease is a synaptic failure. Science 298:789–91. doi:10.1126/science.1074069.
  • Son, Y., Y. J. Jeong, J. H. Kwon, H.-D. Choi, J.-K. Pack, N. Kim, Y.-S. Lee, and H.-J. Lee. 2016. 1950 MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice. Bioelectromagnetics 37:391–99. doi:10.1002/bem.21992.
  • Song, K., S. H. Im, Y. J. Yoon, H. M. Kim, H. J. Lee, and G. S. Park. 2018. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One 13:e0199753. doi:10.1371/journal.pone.0199753.
  • Stine, W. B., L. Jungbauer, C. Yu, and M. J. LaDu. 2011. Preparing synthetic Abeta in different aggregation states. Methods Mol. Biol. 670:13–32.
  • Szemerszky, R., D. Zelena, I. Barna, and G. Bárdos. 2010. Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats. Brain Res. Bull. 81:92–99. doi:10.1016/j.brainresbull.2009.10.015.
  • Teimori, F., A. A. Khaki, A. Rajabzadeh, and L. Roshangar. 2016. The effects of 30 mT electromagnetic fields on hippocampus cells of rats. Sur.g Neuro.l Int. 7:70. doi:10.4103/2152-7806.185006.
  • Todorova, N., A. Bentvelzen, N. J. English, and I. Yarovsky. 2016. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides. J. Chem. Phys. 144:085101. doi:10.1063/1.4941108.
  • Zhang, Y., X. Liu, J. Zhang, and N. Li. 2015. Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer’s disease in rats. Int. J. Radiat. Biol. 91:28–34. doi:10.3109/09553002.2014.954058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.