121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Conformational changes of β-thalassemia major hemoglobin and oxidative status of plasma after in vitro exposure to extremely low-frequency electromagnetic fields: An artificial neural network analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 117-130 | Received 22 May 2020, Accepted 18 Sep 2020, Published online: 23 Oct 2020

References

  • Aebi, H. 1984. [13] Catalase in vitro. Meth. Enzymol. 105:121–26.
  • Aleyasin, H., S. S. Karuppagounder, A. Kumar, S. Sleiman, M. Basso, T. Ma, A. Siddiq, S. J. Chinta, C. Brochier, B. Langley, et al. 2015. Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin. Antioxid. Redox Signal. 22:121–34. doi:10.1089/ars.2013.5595.
  • Benzie, I. F., and J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239:70–76. doi:10.1006/abio.1996.0292.
  • Berköz, M., B. Arslan, M. Yıldırım, N. Aras, S. Yalın, and Ü. Çömelekoğlu. 2018. 1800 MHz radio-frequency electromagnetic radiation induces oxidative stress in rat liver, kidney and brain tissues. East. J. Med. 23:71. doi:10.5505/ejm.2018.20982.
  • Bilgici, B., A. Akar, B. Avci, and O. K. Tuncel. 2013. Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn. Biol. Med. 32:20–29. doi:10.3109/15368378.2012.699012.
  • Budziosz, J., A. Stanek, A. Sieroń, J. Witkoś, A. Cholewka, and K. Sieroń. 2018. Effects of low-frequency electromagnetic field on oxidative stress in selected structures of the central nervous system. Oxid Med Cell Longev 2018:1–8. doi:10.1155/2018/1427412.
  • Bułdak, R. J., R. Polaniak, Ł. Bułdak, K. Żwirska‐Korczala, M. Skonieczna, A. Monsiol, M. Kukla, A. Duława-Bułdak, and E. Birkner. 2012. Short‐term exposure to 50 Hz ELF‐EMF alters the cisplatin‐induced oxidative response in AT478 murine squamous cell carcinoma cells. Bioelectromagnetics 33:641–51. doi:10.1002/bem.21732.
  • Cakir, D. U., B. Yokus, M. Z. Akdag, C. Sert, and N. Mete. 2009. Alterations of hematological variations in rats exposed to extremely low frequency magnetic fields (50 Hz). Arch. Med. Res. 40:352–56. doi:10.1016/j.arcmed.2009.07.001.
  • Calcabrini, C., U. Mancini, R. De Bellis, A. R. Diaz, M. Martinelli, L. Cucchiarini, P. Sestili, V. Stocchi, L. Potenza. 2017. Effect of extremely low‐frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544. Biotechnol. Appl. Biochem. 64:415–22. doi:10.1002/bab.1495.
  • Cichoń, N., M. Bijak, E. Miller, and J. Saluk. 2017. Extremely low frequency electromagnetic field (ELF‐EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics 38:386–96. doi:10.1002/bem.22055.
  • Cichoń, N., P. Rzeźnicka, M. Bijak, E. Miller, S. Miller, and J. Saluk. 2018. Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients. Adv. Clin. Exp. Med. 27:1285–93. doi:10.17219/acem/73699.
  • Ciejka, E., P. Kleniewska, B. Skibska, and A. Goraca. 2011. Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. J. Physiol. Pharmacol. 62:657.
  • Comporti, M., C. Signorini, G. Buonocore, and L. Ciccoli. 2002. Iron release, oxidative stress and erythrocyte ageing. Free Radic. Biol. Med. 32:568–76. doi:10.1016/S0891-5849(02)00759-1.
  • Dai, L., Z. Qian, H. Wang, and G. Yu. 2008. Estimation of brain tissue’s hemoglobin oxygen saturation (SO2) of rats by artificial neural network. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 25:917–20.
  • De Sanctis, V., C. Kattamis, D. Canatan, A. T. Soliman, H. Elsedfy, M. Karimi, S. Daar, Y. Wali, M. Yassin, N. Soliman, et al. 2017. β-thalassemia distribution in the old world: An ancient disease seen from a historical standpoint. Mediterr. J. Hematol. Infect. Dis. 9:1. doi:10.4084/mjhid.2017.018.
  • Ding, H., Q. Lu, H. Gao, and Z. Peng. 2014. Non-invasive prediction of hemoglobin levels by principal component and back propagation artificial neural network. Biomed. Opt. Express 5:1145–52. doi:10.1364/BOE.5.001145.
  • Duong, C. N., and J. Y. Kim. 2016. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS. Int. J. Radiat. Biol. 92:195–201. doi:10.3109/09553002.2016.1136851.
  • Eleuteri, A., M. Amici, L. Bonfili, V. Cecarini, M. Cuccioloni, S. Grimaldi, L. Giuliani, M. Angeletti, E. Fioretti. 2009. 50Hz extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: Effects on proteasomal systems. Biomed. Res. Int. 2009:1–10.
  • Evans, P., L. Lyras, and B. Halliwell. 1999. Measurement of protein carbonyls in human brain tissue. Meth. Enzymol. 300:145–56.
  • Falone, S., N. Marchesi, C. Osera, L. Fassina, S. Comincini, M. Amadio, and A. Pascale. 2016. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. Int. J. Radiat. Biol. 92:281–86. doi:10.3109/09553002.2016.1150619.
  • Feng, B., L. Qiu, C. Ye, L. Chen, Y. Fu, and W. Sun. 2016a. Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway. Int. J. Radiat. Biol. 92:148–55. doi:10.3109/09553002.2016.1135261.
  • Feng, B., C. Ye, L. Qiu, L. Chen, Y. Fu, and W. Sun. 2016b. Mitochondrial ROS release and subsequent Akt activation potentially mediated the anti-apoptotic effect of a 50-Hz magnetic field on FL cells. Cell. Physiol. Biochem. 38:2489–99. doi:10.1159/000445599.
  • Ferroni, L., G. Bellin, V. Emer, R. Rizzuto, M. Isola, C. Gardin, B. Zavan. 2017. Treatment by therapeutic magnetic resonance (TMR™) increases fibroblastic activity and keratinocyte differentiation in an in vitro model of 3D artificial skin. J. Tissue Eng. Regen. Med. 11:1332–42. doi:10.1002/term.2031.
  • Ghone, R. A., K. Kumbar, A. Suryakar, R. Katkam, and N. Joshi. 2008. Oxidative stress and disturbance in antioxidant balance in beta thalassemia major. Indian J. Clin. Biochem. 23:337–40. doi:10.1007/s12291-008-0074-7.
  • Giardine, B., J. Borg, D. R. Higgs, K. R. Peterson, S. Philipsen, D. Maglott, B. K. Singleton, D. J. Anstee, A. N. Basak, B. Clark, et al. 2011. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nat. Genet. 43:295. doi:10.1038/ng.785.
  • Hong, M.-N., N.-K. Han, H.-C. Lee, Y.-K. Ko, S.-G. Chi, Y.-S. Lee, Y. M. Gimm, S. H. Myung, J. S. Lee. 2012. Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells. J. Radiat. Res. 53:79–86.
  • Ibrahim, M., M. El-Gohary, N. Saleh, and M. Elashry. 2008. Spectroscopic study on oxidative reactions of normal and pathogenic hemoglobin molecules. Rom. J. Biophys. 18:39–47.
  • Kesari, K. K., S. Kumar, and J. Behari. 2011. Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male Wistar rats. Appl. Biochem. Biotechnol. 164:546–59. doi:10.1007/s12010-010-9156-0.
  • Kountouris, P., C. W. Lederer, P. Fanis, X. Feleki, J. Old, M. Kleanthous, and A. G. de Brevern. 2014. IthaGenes: An interactive database for haemoglobin variations and epidemiology. PLoS One 9:e103020. doi:10.1371/journal.pone.0103020.
  • Kula, B., A. Sobczak, and R. Kuska. 2002. Effects of electromagnetic field on free-radical processes in steelworkers. J. Occup. Health 44:226–29. doi:10.1539/joh.44.226.
  • Kuypers, F. 2004. The role of phosphatidylserine in recognition and removal of erythrocytes. Cell. Mol. Biol. 50:147–58.
  • Li, L., D.-F. Xiong, J.-W. Liu, Z.-X. Li, G.-C. Zeng, and H.-L. Li. 2015. A cross-sectional study on oxidative stress in workers exposed to extremely low frequency electromagnetic fields. Int. J. Radiat. Biol. 91:420–25. doi:10.3109/09553002.2015.1012304.
  • Livrea, M., L. Tesoriere, A. Pintaudi, A. Calabrese, A. Maggio, H. Freisleben, D. D’Arpa, R. D’Anna, A. Bongiorno. 1996. Oxidative stress and antioxidant status in beta-thalassemia major: Iron overload and depletion of lipid-soluble antioxidants. Blood 88:3608–14. doi:10.1182/blood.V88.9.3608.bloodjournal8893608.
  • Luukkonen, J., A. Liimatainen, J. Juutilainen, and J. Naarala. 2014. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 760:33–41. doi:10.1016/j.mrfmmm.2013.12.002.
  • Makis, A., E. Hatzimichael, I. Papassotiriou, and E. Voskaridou. 2016. 2017 clinical trials update in new treatments of β‐thalassemia. Am. J. Hematol. 91:1135–45. doi:10.1002/ajh.24530.
  • Manikonda, P. K., P. Rajendra, D. Devendranath, B. Gunasekaran, C. Channakeshava, R. Aradhya, R. B. Sashidhar, C. Subramanyam. 2014. Extremely low frequency magnetic fields induce oxidative stress in rat brain. Gen. Physiol. Biophys. 33:81–90. doi:10.4149/gpb_2013059.
  • Mannu, F., P. Arese, M. D. Cappellini, G. Fiorelli, M. Cappadoro, G. Giribaldi, F. Turrini. 1995. Role of hemichrome binding to erythrocyte membrane in the generation of band-3 alterations in beta-thalassemia intermedia erythrocytes. Blood 86:2014–20. doi:10.1182/blood.V86.5.2014.bloodjournal8652014.
  • Martínez-Sámano, J., P. V. Torres-Durán, M. A. Juárez-Oropeza, D. Elías-Viñas, and L. Verdugo-Díaz. 2010. Effects of acute electromagnetic field exposure and movement restraint on antioxidant system in liver, heart, kidney and plasma of Wistar rats: A preliminary report. Int. J. Radiat. Biol. 86:1088–94. doi:10.3109/09553002.2010.501841.
  • Modell, B., and M. Darlison. 2008. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 86:480–87. doi:10.2471/BLT.06.036673.
  • Mousavy, S. J., G. H. Riazi, M. Kamarei, H. Aliakbarian, N. Sattarahmady, A. Sharifizadeh, S. Safarian, F. Ahmad, and A. A. Moosavi–Movahedi. 2009. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int. J. Biol. Macromol. 44:278–85. doi:10.1016/j.ijbiomac.2009.01.001.
  • Musallam, K. M., S. Rivella, E. Vichinsky, and E. A. Rachmilewitz. 2013. Non-transfusion-dependent thalassemias. haematologica 98:833–44. doi:10.3324/haematol.2012.066845.
  • National Cancer Institute. 2019. Electromagnetic fields and cancer [ Internet]. https://www.cancer.gov/about-cancer/causes-prevention/risk/radiation/electromagnetic-fields-fact-sheet#r9.
  • Osera, C., M. Amadio, S. Falone, L. Fassina, G. Magenes, F. Amicarelli, G. Ricevuti, S. Govoni, A. Pascale. 2015. Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity. Bioelectromagnetics 36:219–32. doi:10.1002/bem.21900.
  • Pennell, D. J., J. E. Udelson, A. E. Arai, B. Bozkurt, A. R. Cohen, R. Galanello, T. M. Hoffman, M. S. Kiernan, S. Lerakis, A. Piga, et al. 2013. Cardiovascular function and treatment in β-thalassemia major: A consensus statement from the American Heart Association. Circulation 128:281–308. doi:10.1161/CIR.0b013e31829b2be6.
  • Poniedzialek, B., P. Rzymski, H. Nawrocka-Bogusz, F. Jaroszyk, and K. Wiktorowicz. 2013. The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro. Electromagn. Biol. Med. 32:333–41. doi:10.3109/15368378.2012.721845.
  • Reale, M., M. A. Kamal, A. Patruno, E. Costantini, C. D’Angelo, M. Pesce, and N. H. Greig. 2014. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: Implications regarding oxidative stress and neurodegeneration. PloS One 9:e104973. doi:10.1371/journal.pone.0104973.
  • Rifkind, J. M., J. G. Mohanty, and E. Nagababu. 2015. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front. Physiol. 5:500. doi:10.3389/fphys.2014.00500.
  • Rund, D., and E. Rachmilewitz. 2005. b-thalassemia. N. Engl. J. Med. 353:1135–46. doi:10.1056/NEJMra050436.
  • Vincenzi, F., A. Ravani, S. Pasquini, S. Merighi, S. Gessi, S. Setti, R. Cadossi, P. A. Borea, K. Varani. 2017. Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron‐like and microglial cells. J. Cell. Physiol. 232:1200–08. doi:10.1002/jcp.25606.
  • Walter, P. B., E. B. Fung, D. W. Killilea, Q. Jiang, M. Hudes, J. Madden, J. Porter, P. Evans, E. Vichinsky, P. Harmatz, et al. 2006. Oxidative stress and inflammation in iron‐overloaded patients with β‐thalassaemia or sickle cell disease. Br. J. Haematol. 135:254–63. doi:10.1111/j.1365-2141.2006.06277.x.
  • Wang, C., Y. Liu, Y. Wang, Z. Wei, D. Suo, G. Ning, Q. Wu, S. Feng, C. Wan. 2019. Low‑frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury. Mol. Med. Rep. 19:1687–93.
  • Wang, H., and X. Zhang. 2017. Magnetic fields and reactive oxygen species. Int. J. Mol. Sci. 18:2175. doi:10.3390/ijms18102175.
  • Wood, L. S. 2006. Managing the side effects of sorafenib and sunitinib. Community Oncol. 3:558–62. doi:10.1016/S1548-5315(11)70751-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.