2,142
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effects of the signal modulation on the response of human fibroblasts to in vitro stimulation with subthermal RF currents

, &
Pages 201-209 | Received 04 Jun 2020, Accepted 27 Sep 2020, Published online: 17 Oct 2020

References

  • Andersson, R., and A. Sandelin. 2020. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21:71–87. doi:10.1038/s41576-019-0173-8.
  • Atalay, M., N. Oksala, J. Lappalainen, D. Laaksonen, C. Sen, S. Roy, et al. 2009. Heat shock proteins in diabetes and wound healing. Curr. Protein Pept. Sci. 10:85–95. doi:10.2174/138920309787315202.
  • Barbault, A., F. P. Costa, B. Bottger, R. F. Munden, F. Bomholt, N. Kuster, B. Pasche, et al. 2009. Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J. Exp. Clin. Cancer Res. 28:51. doi:10.1186/1756-9966-28-51.
  • Bitar, K. N. 2002. HSP27 phosphorylation and interaction with actin-myosin in smooth muscle contraction. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G894–903. doi:10.1152/ajpgi.00141.2001.
  • Bito, T., Y. Tashiro, Y. Suzuki, Y. Kajiwara, H. Zeidan, M. Kawagoe, T. Sonoda, Y. Nakayama, Y. Yokota, K. Shimoura, et al. 2019. Acute effects of capacitive and resistive electric transfer (CRet) on the Achilles tendon. Electromagn. Biol. Med. 38:48–54. doi:10.1080/15368378.2019.1567525.
  • Blackman, C. F. 2012. Treating cancer with amplitude-modulated electromagnetic fields: A potential paradigm shift, again? Br. J. Cancer 106:241–42. doi:10.1038/bjc.2011.576.
  • Concannon, C. G., A. M. Gorman, and A. Samali. 2003. On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70. doi:10.1023/A:1021601103096.
  • Conner-Kerr, T., and R. A. Isenberg. 2012. Retrospective analysis of pulsed radiofrequency energy therapy use in the treatment of chronic pressure ulcers. Adv. Skin Wound Care 25:253–60. doi:10.1097/01.ASW.0000415342.37554.ed.
  • Costantino, C., F. Pogliacomi, and E. Vaienti. 2005. Cryoultrasound therapy and tendonitis in athletes: A comparative evaluation versus laser CO2 and t.e.ca.r. therapy. Acta Biomed. 76:37–41.
  • Dams, S. D., M. de Liefde-van Beest, A. Nuijs, et al. 2010. Pulsed heat shocks enhance procollagen type I and procollagen type III expression in human dermal fibroblasts. Skin Res. Technol. 16:354–64. doi:10.1111/j.1600-0846.2010.00441.x.
  • Fousekis, K., G. Chrysanthopoulos, M. Tsekoura, D. Mandalidis, K. Mylonas, P. Angelopoulos, D. Koumoundourou, V. Billis, E. Tsepis, et al. 2020. Posterior thigh thermal skin adaptations to radiofrequency treatment at 448 kHz applied with or without Indiba® fascia treatment tools. J. Phys. Ther. Sci. 32:292–96. doi:10.1589/jpts.32.292.
  • Fransson, L. A., M. Belting, M. Jönsson, K. Mani, J. Moses, Å. Oldberg, et al. 2000. Biosynthesis of decorin and glypican. Matrix Biol. 19:367–76. doi:10.1016/s0945-053x(00)00083-4.
  • Ganzit, G. P., L. Stefanini, and G. Stesina. 2000. Nuove methodice nei trattamento della patología muscolo-articolare dell´atleta. La tecarterapia. Med. Sport 53:361–67.
  • Grimnes, S., and Ø. G. Martinsen. 2000. Joule effect and temperature rise. Bioimpedance and bioelectricity basics, 71–73. London: Academic Press: Harcourt and Technology Co.
  • Hernández-Bule, M. L., C. L. Paíno, M. A. Trillo, and A. Úbeda. 2014. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells. Cell. Physiol. Biochem. 34:1741–55. doi:10.1159/000366375.
  • Hernández-Bule, M. L., E. Medel, C. Colastra, R. Roldán, and A. Úbeda. 2019. Response of neuroblastoma cells to RF currents as a function of the signal frequency. BMC Cancer 19:889. doi:10.1186/s12885-019-6090-6.
  • Hernández-Bule, M. L., J. Martínez-Botas, M. A. Trillo, C. L. Paíno, and A. Úbeda. 2016. Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells. Mol. Med. Rep. 13:3895–903. doi:10.3892/mmr.2016.5032.
  • Hernández-Bule, M. L., M. A. Cid, M. A. Trillo, J. Leal, and A. Ubeda. 2010. Cytostatic response of HepG2 to 0.57 MHz electric currents mediated by changes in cell cycle control proteins. Int. J. Oncol. 37:1399–405.
  • Hernández-Bule, M. L., M. A. Trillo, M. A. Martínez, C. Abilahoud, and A. Úbeda. 2017. Chondrogenic differentiation of adipose-derived stem cells by radiofrequency electric stimulation. J. Stem Cell. Res. Ther. 7:12. doi:10.4172/2157-7633.1000407.
  • Hill, L. J., R. J. A. Moakes, C. Vareechon, G. Butt, A. Ng, K. Brock, G. Chouhan, R. C. Vincent, S. Abbondante, R. L. Williams, et al. 2018. Sustained release of decorin to the surface of the eye enables scarless corneal regeneration. NPJ Regen. Med. 3:23. doi:10.1038/s41536-018-0061-4.
  • Hirano, S., E. A. Shelden, and R. R. Gilmont. 2004. HSP27 regulates fibroblast adhesion, motility, and matrix contraction. Cell Stress & Chaperones 9:29–37. doi:10.1379/1466-1268(2004)009<0029:HRFAMA>2.0.CO;2.
  • Hirano, S., R. S. Rees, and R. R. Gilmont. 2002. MAP kinase pathways involving hsp27 regulate fibroblast-mediated wound contraction. J. Surg. Res. 102:77–84. doi:10.1006/jsre.2001.6315.
  • Huot, J., F. Houle, D. R. Spitz, and J. Landry. 1996. HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res. 56:273–79.
  • Ishida, Y., H. Kubota, A. Yamamoto, et al. 2006. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol. Biol. Cell 17:2346–55. doi:10.1091/mbc.e05-11-1065.
  • Ishida, Y., and K. Nagata. 2011. Hsp47 as a collagen-specific molecular chaperone. Meth. Enzymol. 499:167–82. doi:10.1016/B978-0-12-386471-0.00009-2.
  • Ishikawa, Y., K. Rubin, H. P. Bächinger, and S. Kalamajski. 2018. The endoplasmic reticulum-resident collagen chaperone Hsp47 interacts with and promotes the secretion of decorin, fibromodulin, and lumican. J. Biol. Chem. 293:13707–16. doi:10.1074/jbc.RA117.000758.
  • Ishikawa, Y., S. Ito, K. Nagata, et al. 2016. Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. Proc. Natl. Acad. Sci. U S A 113:E6036–E6044. doi:10.1073/pnas.1609571113.
  • Ito, S., and K. Nagata. 2019. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J. Biol. Chem. 294:2133–41. doi:10.1074/jbc.TM118.002812.
  • Juutilainen, J., A. Höytö, T. Kumlin, and J. Naarala. 2011. Review of possible modulation-dependent biological effects of radiofrequency fields. Bioelectromagnetics 32:511–34. doi:10.1002/bem.20652.
  • Karaki, W., C. Lopez, F. Rahul, D. D. Borca-Tasciuc, and S. De. 2019. Waveform-dependent electrosurgical effects on soft hydrated tissues. J. Biomech. Eng. 141:0510031–05100314. doi:10.1115/1.4042898.
  • Kotnik, T., and D. Miklavcic. 2000. Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields. Bioelectromagnetics 21:385–94. doi:10.1002/1521-186X(200007)21:5<385::AID-BEM7>3.0.CO;2-F.
  • Kovalchin, J. T., R. Wang, M. S. Wagh, J. Azoulay, BS, M. Sanders, MD, R. Y. Chandawarkar, et al. 2006. In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen. 14:129–37. doi:10.1111/j.1743-6109.2006.00102.x.
  • Kumaran, B., and T. Watson. 2019. Treatment using 448kHz capacitive resistive monopolar radiofrequency improves pain and function in patients with osteoarthritis of the knee joint: A randomised controlled trial. Physiotherapy 105:98–107. doi:10.1016/j.physio.2018.07.004.
  • Landry, J., and J. Huot. 1995. Modulation of actin dynamics during stress and physiological stimulation by a signaling pathway involving p38 MAP kinase and heat-shock protein 27. Biochem. Cell. Biol. 73:703–07. doi:10.1139/o95-078.
  • Lavoie, J. N., G. Gingras-Breton, R. M. Tanguay, and J. Landry. 1993. Induction of chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J. Biol. Chem. 268:3420–29.
  • Lavoie, J. N., H. Lambert, E. Hickey, et al. 1995. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol. Cell. Biol. 15:505–16. doi:10.1128/mcb.15.1.505.
  • Li, Y., J. Li, J. Zhu, B. Sun, M. Branca, Y. Tang, W. Foster, X. Xiao, J. Huard, et al. 2007. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol. Ther. 15:1616–22. doi:10.1038/sj.mt.6300250.
  • Li, Y., Y. Liu, W. Xia, D. Lei, J. J. Voorhees, G. J. Fisher, et al. 2013. Age-dependent alterations of decorin glycosaminoglycans in human skin. Sci. Rep. 3:2422. doi:10.1038/srep02422.
  • López-de-Celis, C., C. Hidalgo-García, A. Pérez-Bellmunt, P. Fanlo-Mazas, V. González-Rueda, J. M. Tricás-Moreno, S. Ortiz, J. Rodríguez-Sanz, et al. 2020. Thermal and non-thermal effects of capacitive-resistive electric transfer application on the Achilles tendon and musculotendinous junction of the gastrocnemius muscle: A cadaveric study. BMC Musculoskelet. Disord. 21:46. doi:10.1186/s12891-020-3072-4.
  • Lutsch, G., R. Vetter, U. Offhauss, M. Wieske, H.-J. Gröne, R. Klemenz, I. Schimke, J. Stahl, R. Benndorf, et al. 1997. Abundance and location of the small heat shock proteins HSP25 and αB-Crystallin in rat and human heart. Circulation 96:3466–76. doi:10.1161/01.cir.96.10.3466.
  • Ma, R., J. Chen, Z. Li, et al. 2014. Decorin accelerates the liver regeneration after partial hepatectomy in fibrotic mice. Chin. Med. 127:2679–85.
  • Masago, Y., A. Hosoya, K. Kawasaki, S. Kawano, A. Nasu, J. Toguchida, K. Fujita, H. Nakamura, G. Kondoh, K. Nagata, et al. 2012. The molecular chaperone Hsp47 is essential for cartilage and endochondral bone formation. J. Cell. Sci. 125:1118–28. doi:10.1242/jcs.089748.
  • Millar, N. L., and G. A. Murrell. 2012. Heat shock proteins in tendinopathy: Novel molecular regulators. Mediators Inflamm. 2012:436203. doi:10.1155/2012/436203.
  • Mondardini, P., R. Tanzi, L. Verardi, et al. 1999. New methods for the treatment of traumatic muscle pathology in athletes: C.R.E.T therapy. Medicina dello Sport 52:201–13.
  • Nagai, N., M. Hosokawa, S. Itohara, E. Adachi, T. Matsushita, N. Hosokawa, K. Nagata, et al. 2000. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell. Biol. 150:1499–506. doi:10.1083/jcb.150.6.1499.
  • Nagata, K. 1998. Expression and function of heat shock protein 47: A collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol. 16:379–86. doi:10.1016/s0945-053x(98)90011-7.
  • Neufer, P. D., and I. J. Benjamin. 1996. Differential expression of B-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors. J. Biol. Chem. 271:24089–95. doi:10.1074/jbc.271.39.24089.
  • Pang, X., N. Dong, and Z. Zheng. 2020. Small leucine-rich proteoglycans in skin wound healing. Front Pharmacol. 10:1649. doi:10.3389/fphar.2019.01649.
  • Parolo, E., and M. P. Honesta. 1998. HCR 900. Hyperthermia by capacitive and resistive energy transfer in the treatment of acute and chronic muscular-skeletal injuries. La Riabilitazione 31:81–83.
  • Rawe, I. M., and T. C. Vlahovic. 2012. The use of a portable, wearable form of pulsed radio frequency electromagnetic energy device for the healing of recalcitrant ulcers: A case report. Int. Wound J. 9:253–58. doi:10.1111/j.1742-481X.2011.00853.x.
  • Reed, C. C., and R. V. Iozzo. 2002. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj. J. 19:249–55. doi:10.1023/A:1025383913444.
  • Stasinopoulos, D., A. Constantinou, and D. Lamnisos. 2020. 448 khz Capacitive resistive monopolar radiofrequency in patients with rotator cuff tendinopathy. A pilot study. Acta Scientific Orthopaedics 3:16–20. doi:10.31080/ASOR.2020.03.0156.
  • Takahashi, K. S. T., S. Hirabayashi, S. Hirabayashi, S. Hirabayashi, N. Tsuzuki, L. Zhong-Shi, et al. 1999. Clinical effects of capacitive electric transfer hyperthermia therapy for lumbago. J. Phys. Ther. Sci. 11:45–51. doi:10.1589/jpts.11.45.
  • Tiedemann, K., T. Larsson, D. Heinegård, and A. Malmström. 2001. The glucuronyl C5-epimerase activity is the limiting factor in the dermatan sulfate biosynthesis. Arch. Biochem. Biophys. 391:65–71. doi:10.1006/abbi.2001.2376.
  • Tukaj, S., and M. Kaminski. 2019. Heat shock proteins in the therapy of autoimmune diseases: Too simple to be true? Cell. Stress Chaperones 24:475–79. doi:10.1007/s12192-019-01000-3.
  • Vidyasagar, A., N. A. Wilson, and A. Djamali. 2012. Heat shock protein 27 (HSP27): Biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 5:7. doi:10.1186/1755-1536-5-7.
  • Wang, Z. L., T. Inokuchi, H. Ikeda, et al. 2002. Collagen-binding heat shock protein HSP47 expression during healing of fetal skin wounds. Int. J. Oral Maxillofac. Surg. 31:179–84. doi:10.1054/ijom.2001.0191.
  • Yokota, Y., T. Sonoda, Y. Tashiro, Y. Suzuki, Y. Kajiwara, H. Zeidan, Y. Nakayama, M. Kawagoe, K. Shimoura, M. Tatsumi, et al. 2018. Effect of capacitive and resistive electric transfer on changes in muscle flexibility and lumbopelvic alignment after fatiguing exercise. J. Phys. Ther. Sci. 30:719–25. doi:10.1589/jpts.30.719.