214
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of B16F10 Cancer Cell Growth by Exposure to the Square Wave with 7.83+/-0.3Hz Involves L- and T-Type Calcium Channels

, , , & ORCID Icon
Pages 150-157 | Received 12 Aug 2020, Accepted 12 Oct 2020, Published online: 28 Oct 2020

References

  • Berridge, M. J. 2012. Calcium signaling remodelling and disease. Biochem. Soc. Trans. 40:297–309. doi:10.1042/BST20110766.
  • Berridge, M. J., M. D. Bootman, and H. L. Roderick. 2003. Calcium signaling: Dynamics, homeostasis, and remodeling. Nat. Rev. Mol. Cell Biol. 4:517–29. doi:10.1038/nrm1155.
  • Brighton, C. T., W. Wang, R. Seldes, G. Zhang, and S. R. Pollack. 2001. Signal transduction in electrically stimulated bone cells. J Bone Joint Surg. 83:1514–23. doi:10.2106/00004623-200110000-00009.
  • Buckner, C. A., A. L. Buckner, S. A. Koren, M. A. Persinger, and R. M. Lafrenie. 2015. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS One 10:e0124136. doi:10.1371/journal.pone.0124136.
  • Cens, T., M. Rousset, C. Collet, M. Charreton, L. Garnery, Y. Le Conte, M. Chahine, J. C. Sandoz, and P. Charnet. 2015. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels. Insect. Biochem. Mol. Biol. 58:12–27. doi:10.1016/j.ibmb.2015.01.005.
  • Chen, Y. C., C. C. Chen, and W. Tu. 2010. Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells. J. Micromech. Microeng 20:125023. doi:10.1088/0960-1317/20/12/125023.
  • Ćosić, I., D. Cvetković, Q. Fang, and H. Lazoura. 2006. Human electrophysiological signal responses to ELF Schumann resonance and artificial electromagnetic fields. FME Trans. 34:93–103.
  • Cui, Y., X. Liu, T. Yang, Y. A. Mei, and C. Hu. 2014. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cell Calcium 55:48–58. doi:10.1016/j.ceca.2013.11.002.
  • Das, A., C. Pushparaj, N. Bahí, A. Sorolla, J. Herreros, R. Pamplona, R. Vilella, X. Matias-Guiu, R. M. Martí, and C. Cantí. 2012. Functional expression of voltage‐gated calcium channels in human melanoma. Pigm. Cell Melanoma Res. 25:200–12. doi:10.1111/j.1755-148X.2012.00978.x.
  • Komazaki, S., and K. Takano. 2007. Induction of increase in intracellular calcium concentration of embryonic cells and acceleration of morphogenetic cell movements during amphibian gastrulation by a 50‐Hz magnetic field. J. Exp. Zool A: Ecol. Genet. Physiol. 307:156–62. doi:10.1002/jez.a.359.
  • Korzh-Sleptsova, I. L., E. Lindström, K. H. Mild, A. Berglund, and E. Lundgren. 1995. Low frequency MFs increased inositol 1, 4, 5-trisphosphate levels in the Jurkat cell line. FEBS Lett. 359:151–54. doi:10.1016/0014-5793(95)00031-4.
  • Li, X., M. Zhang, L. Bai, and W. Bai. 2012. Effects of 50 Hz pulsed electromagnetic fields on the growth and cell cycle arrest of mesenchymal stem cells: An in vitro study. Electromagn. Biol. Med. 31:356–64. doi:10.3109/15368378.2012.662194.
  • Huang, L., L.Dong, Y. Chen, H. Qi & X. Dengming .2006. Effects of Sinusoidal Magnetic Field Observed on Cell Proliferation, Ion Concentration, and Osmolarity in Two Human Cancer Cell Lines.Electromagnetic Biology and Medicine. 25(2):113-126. doi:10.1080/15368370600719067.
  • Lisi, A., M. Ledda, and F. De Carlo. 2008a. Ion cyclotron resonance as a tool in regenerative medicine. Electromagn. Biol. Med. 27:127–33. doi:10.1080/15368370802072117.
  • Lisi, A., M. Ledda, and F. De Carlo. 2008b. Calcium ion cyclotron resonance (ICR) transfers information to living systems: Effects on human epithelial cell differentiation. Electromagn. Biol. Med. 27:230–40. doi:10.1080/15368370802269135.
  • Lyle, D. B., X. Wang, R. D. Ayotte, A. R. Sheppard, and W. R. Adey. 1991. Calcium uptake by leukemic and normal T‐lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics 12:145–56. doi:10.1002/bem.2250120303.
  • Makinistian, L., E. Marková, and I. Belyaev. 2019. A high throughput screening system of coils for ELF magnetic fields experiments: Proof of concept on the proliferation of cancer cell lines. BMC Cancer 19:188. doi:10.1186/s12885-019-5376-z.
  • Ming, Y., Y. Min, and Z. Zhen-Yu. 2015. Biological effects research of extremely low frequency electromagnetic field on osteosarcoma cell in vitro. Progn. Mod. Biomed. 15:260.
  • Nie, Y., L. Du, Y. Mou, Z. Xu, L. Weng, Y. Du, and T. Wang. 2013. Effect of low frequency magnetic fields on melanoma: Tumor inhibition and immune modulation. BMC Cancer 13:582. doi:10.1186/1471-2407-13-582.
  • Overwijk, W. W., and N. P. Restifo. 2000. B16 as a mouse model for human melanoma. Curr. Protocol. Immunol. 39:20–21. doi:10.1002/0471142735.im2001s39.
  • Pall, M. L. 2013. Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 17:958–65. doi:10.1111/jcmm.12088.
  • Pall, M. L. 2015. Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: Microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev. Environ. Health 3:99–116.
  • Pall, M. L. 2018. Wi-Fi is an important threat to human health. Environ. Res. 164:405–16. doi:10.1016/j.envres.2018.01.035.
  • Panagopoulos, D. J., A. Karabarbounis, and L. H. Margaritis. 2002. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102. doi:10.1016/S0006-291X(02)02393-8.
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. 2017. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longevity 2017: 8416763.
  • Prevarskaya, N., H. Ouadid-Ahidouch, and R. Skryma. 2014. Remodelling of Ca2+ transport in cancer: How it contributes to cancer hallmarks? Philos. Trans. R. Soc. B. 369:20130097. doi:10.1098/rstb.2013.0097.
  • Resende, R. R., A. Adhikari, J. L. da Costa, E. Lorencon, M. S. Ladeira, and S. Guatimosim. 2010. Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. Biochim. Biophys. Acta 1803:246–60. doi:10.1016/j.bbamcr.2009.11.008.
  • Roderick, H. L., and S. J. Cook. 2008. Ca2+ signalling checkpoints in cancer: Remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8:361.
  • Santini, M. T., A. Ferrante, G. Rainaldi, P. Indovina, and P. L. Indovina. 2005. Extremely low frequency (ELF) magnetic fields and apoptosis: A review. Int. J. Radiat. Biol. 81:1–11. doi:10.1080/09553000400029502.
  • Schimmelpfeng, J., and H. Dertinger. 1997. Action of a 50 Hz magnetic field on proliferation of cells in culture. Bioelectromagnetics 18:177–83. doi:10.1002/(SICI)1521-186X(1997)18:2<177::AID-BEM11>3.0.CO;2-O.
  • Schumann, W. O. 1952. Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Z. Naturforsch. A 7:149–54. doi:10.1515/zna-1952-0202.
  • See, V., N. K. Rajala, D. G. Spiller, and M. R. White. 2004. Calcium-dependent regulation of the cell cycle via a novel MAPK-NF-kB pathway in Swiss 3T3 cells. J. Cell Biol. 166:661–72. doi:10.1083/jcb.200402136.
  • Simko, M., R. Kriehuber, D. G. Weiss, and R. A. Luben. 1998. Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics 19:85–91.
  • Tang, J. Y., T. W. Yeh, Y. T. Huang, M. H. Wang, and L. S. Jang. 2019. Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells. Electromagn. Biol. Med. 38:149–57. doi:10.1080/15368378.2019.1591438.
  • Tsai, M. T., W. J. Li, R. S. Tuan, and W. H. Chang. 2009. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J. Orthop. Res. 27:1169–74.
  • Wang, T., Y. Nie, S. Zhao, Y. Han, Y. Du, and Y. Hou. 2011. Involvement of midkine expression in the inhibitory effects of low‐frequency magnetic fields on cancer cells. Bioelectromagnetics 32:443–52. doi:10.1002/bem.20654.
  • Wei, J., J. Sun, H. Xu, L. Shi, L. Sun, and J. Zhang. 2015. Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes. Electromagn. Biol. Med. 34:77–84. doi:10.3109/15368378.2014.881744.
  • Wu, X. S., B. D. McNeil, J. Xu, J. Fan, L. Xue, E. Melicoff, R. Adachi, L. Bai, and L. G. Wu. 2009. Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat. Neurosci. 12:1003–10. doi:10.1038/nn.2355.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.