200
Views
1
CrossRef citations to date
0
Altmetric
Review

Direct-current electric field effect on the viability of HeLa cell line

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 41-48 | Received 11 Jun 2020, Accepted 01 Nov 2020, Published online: 12 Nov 2020

References

  • Al-Ahmad, M., Z. Al-Natour, F. Mustaf, and T. A. Rizvi. 2018. Electrical characterization of normal and cancer cells. IEEE Access IEEE. 6:25979–86. doi:10.1109/ACCESS.2018.2830883.
  • Allen, G. M., A. Mogilner, and J. A. Theriot. 2013. Electrophoresis of cellular membrane components creates the directional cue guiding keratocyte galvanotaxis. Curr. Biol. Elsevier Ltd. 23:560–68. doi:10.1016/j.cub.2013.02.047.
  • Arcangeli, A., A. Becchetti, A. Mannini, G. Mugnai, P. De Filippi, G. Tarone, M. R. Del Bene, E. Barletta, E. Wanke, M. Olivotto, et al. 1993. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J. Cell Biol. 122:1131–43. doi:10.1083/jcb.122.5.1131.
  • Arcangeli, A., B. Rosati, A. Cherubini, O. Crociani, L. Fontana, C. Ziller, E. Wanke, M. Olivotto. 1997. HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. Eur. J. Neurosci. 9:2596–604. doi:10.1111/j.1460-9568.1997.tb01689.x.
  • Bauer, C. K., and J. R. Schwarz. 2001. Physiology of EAG K+ channels. J. Membr.Biol. 182:1–15. doi:10.1007/s00232-001-0031-3.
  • Berridge, M. V., P. M. Herst, and A. S. Tan. 2005. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 11:127–52.
  • Blackiston, D. J., K. A. McLaughlin, and M. Levin. 2009. Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527–36. doi:10.4161/cc.8.21.9888.
  • Boonstra, J., Mummery, C. L., Tertoolen, L. G., Van Der Saag, P. T., & De Laat, S. W. 1981. Cation transport and growth regulation in neuroblastoma cells. Modulations of K + transport and electrical membrane properties during the cell cycle. J. Cell. Physiol. 107:75–83. doi:10.1002/jcp.1041070110.
  • Borle, A. B. 1969. Kinetic analyses of calcium movements in HeLa cell cultures. I. Calcium influx. J. Gen. Physiol. 53:43–56. doi:10.1085/jgp.53.1.43.
  • Cone, C. D., Jr. 1969. Electroosmotic interactions accompanying mitosis initation in sarcoma cells in vitro. Trans. N Y Acad. Sci. 31:404–27. doi:10.1111/j.2164-0947.1969.tb02926.x. [PubMed: 5257510].
  • Cone, C. D. 1971. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J. Theor. Biol. 30:151–81. doi:10.1016/0022-5193(71)90042-7.
  • Cooperd, M. S., and M. Schliwa. 1986. Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J. Cell Biol. 102:1384–99. doi:10.1083/jcb.102.4.1384.
  • Djamgoz, M. B. A., M. Mycielska, Z. Madeja, S. P. Fraser, and W. Korohoda. 2001. Directional movement of rat prostate cancer cells in direct-current electric field : Involvement of voltage- gated Na + channel activity. J. Cell. Sci. 114:2697–705.
  • Fehlings, M. G., and C. H. Tator. 1992. The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res. 579:32–42. doi:10.1016/0006-8993(92)90738-U.
  • Finkelstein, E., W. Chang, P. G. Chao, D. Gruber, A. Minden, Hung, C. T., & Bulinski, J. C. 2004. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts. J. Cell. Sci. 117:1533–45. doi:10.1242/jcs.00986.
  • Finkelstein, E. I., P. G. Chao, C. T. Hung, and J. C. Bulinski. 2007. Electric field-induced polarization of charged cell surface proteins does not determine the direction of galvanotaxis. Cell Motil. Cytoskeleton 64:833–46. doi:10.1002/cm.20227.
  • Grimes, J. A., and M. B. A. Djamgoz. 1998. Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer. J. Cell. Physiol. 175:50–58. doi:10.1002/(SICI)1097-4652(199804)175:1<50::AID-JCP6>3.0.CO;2-B.
  • Jao, J.-Y., C.-F. Liu, M.-K. Chen, Y.-C. Chuang, and L.-S. Jang. 2011. Electrical characterization of single cell in microfluidic device. Microelectron. Reliab. Elsevier Ltd. 51:781–89. doi:10.1016/j.microrel.2010.12.001.
  • Kaczmarek, D., and E. Jankowska. 2018. DC-evoked modulation of excitability of myelinated nerve fibers and their terminal branches; differences in sustained effects of DC. Neuroscience IBRO. 374:236–49. doi:10.1016/j.neuroscience.2018.01.036.
  • Kim, M., S. Kim, M. H. Lee, B. Kwon, H. J. Seo, M. Koo, D. Kim, J.-C. Park. 2014. Effects of direct current electric-field using ITO plate on breast cancer cell migration. Biomater. Res. 18:1–6. doi:10.1186/2055-7124-18-10.
  • Kirson, E. D., Z. Gurvich, R. Schneiderman, E. Dekel, A. Itzhaki, Y. Wasserman, R. Schatzberger, Y. Palti. 2004. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64:3288–95. doi:10.1158/0008-5472.CAN-04-0083.
  • Li, F., T. Chen, S. Hu, J. Lin, R. Hu, H. Feng. 2013. Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK. PLoS ONE 8:e61195. doi:10.1371/journal.pone.0061195.
  • Li, X., and J. Kolega. 2002. Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. J. Vasc. Res. 39:391–404. doi:10.1159/000064517.
  • Li, Y., M. Weiss, and L. Yao. 2014. Directed migration of embryonic stem cell-derived neural cells in an applied electric field. Stem Cell Rev. Rep. 10:653–62. doi:10.1007/s12015-014-9518-z.
  • Li, Y., T. Xu, X. Chen, S. Lin, M. Cho, D. Sun, M. Yang. 2017. Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMA-based microfluidic device. Anal. Bioanal. Chem. 409:2163–78. doi:10.1007/s00216-016-0162-0.
  • Loechner, K. J., W. C. Salmon, J. Fu, S. Patel, and J. T. McLaughlin. 2009. Cell cycle-dependent localization of voltage-dependent calcium channels and the mitotic apparatus in a neuroendocrine cell line(AtT-20). Int J Cell Biol (2009):1–12. doi:10.1155/2009/487959.
  • Meng, S., M. Rouabhia, and Z. Ze. 2011. Electrical stimulation in tissue regeneration, applied biomedical ENGINEERING. In G. Gargiulo ed.. InTech. ISBN: 978-953-307-256-2. http://www.intechopen.com/books/applied-biomedical-engineering/electrical-stimulation-in-tissue-regeneration
  • Mycielska, M. E., and M. B. A. Djamgoz. 2004. Cellular mechanisms of direct-current electric field effects : Galvanotaxis and metastatic disease. J. Cell. Sci. 117:1631–39. doi:10.1242/jcs.01125.
  • Nuccitelli, R. 1988. Physiological electric fields can influence cell motility, growth, and polarity. Adv. Mol. Cell Biol. 2:213–33. doi:10.1016/S1569-2558(08)60435-X.
  • Pardo, L. A. 2004. Voltage-gated potassium channels in cell proliferation. Physiology 19:285–92. doi:10.1152/physiol.00011.2004.
  • Rao, V., M. Perez-Neut, S. Kaja, and S. Gentile. 2015. Voltage-gated ion channels in cancer cell proliferation. Cancers Multidisciplinary Digital Publishing Institute. 7:849–75. doi:10.3390/cancers7020813.
  • Ren, X., H. Sun, J. Liu, X. Guo, J. Huang, X. Jiang, Y. Zhang, Y. Huang, D. Fan, J. Zhang, et al. 2019. Bioelectrochemistry keratinocyte electrotaxis induced by physiological pulsed direct current electric fields. Bioelectrochemistry Elsevier B.V. 127:113–24. doi:10.1016/j.bioelechem.2019.02.001.
  • Robinson, K. R. 1985. The responses of cells to electrical fields: A review. J. Cell Biol. 101:2023–27. doi:10.1083/jcb.101.6.2023.
  • Samaddar, S., K. Vazquez, D. Ponkia, P. Toruno, K. Sahbani, S. Begum, A. Abouelela, W. Mekhael, Z. Ahmed. 2017. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice. J. Appl. Physiol. 122:339–53. doi:10.1152/japplphysiol.00834.2016.
  • Sarkar, A., B. M. Kobylkevich, D. M. Graham, and M. A. Messerli. 2019. Electromigration of cell surface macromolecules in DC electric fields during cell polarization and galvanotaxis. J. Theor. Biol. Elsevier Ltd. 478:58–73. doi:10.1016/j.jtbi.2019.06.015.
  • Stein, M. A., D. A. Mathers, H. Yan, K. G. Baimbridge, and B. B. And Finlay. 1996. Enteropathogenic escherichia coli markedly decreases the resting membrane potential of Caco-2 and HeLa human epithelial cells. Infect. Immun. 64:4820–25. doi:10.1128/IAI.64.11.4820-4825.1996.
  • Vianay, B., F. Senger, S. Alamos, M. Anjur-Dietrich, E. Bearce, B. Cheeseman, L. Lee, M. Théry. 2018. Variation in traction forces during cell cycle progression. Biol. Cell 110:91–96. doi:10.1111/boc.201800006.
  • Wang, E., Y. Yin, M. Zhao, J. V. Forrester, and C. D. McCaig. 2003. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation. Physiol. Electric Fields Control G1/S Phase Cell Cycle Checkpoint Inhibit Endothelial Cell Proliferation 17:458–60.
  • Wang, M.H., Jang, L.S., 2009. A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations. Biosens. Bioelectron. 24, 2830–2835. doi:10.1016/j.bios.2009.02.012
  • Wu, D., X. Ma, and F. Lin. 2013. DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions. Cell Biochem. Biophys. 67:1115–25. doi:10.1007/s12013-013-9615-7.
  • Zhao, M., J. V. Forrester, and C. D. McCaig. 1999. A small, physiological electric field orients cell division. Proc. Natl. Acad. Sci. USA 96:4942–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.