197
Views
3
CrossRef citations to date
0
Altmetric
Review

Malignant cell characterization via mathematical analysis of bio impedance and optical properties

ORCID Icon
Pages 65-83 | Received 04 Nov 2019, Accepted 10 Nov 2020, Published online: 27 Dec 2020

References

  • Adrian, F. J., D. M. Serachitopol, N. McKinnon, R. L. Price, E. N. Atkinson, D. D. Cox, C. E. MacAulay, R. R. Richards-Kortum, M. Follen, and B. M. Pikkula. 2007. Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe. J. Biomed. Opt. 12:034015.
  • Ahmad, A., Z. Mahmoud, A. Natour, F. Mustafa, and T. A. Rizvi. 2018. Electrical characterization of normal and cancer cells. IEEE Acc. 6:25979–86.
  • Alander, J. T., I. Kaartinen, A. Laakso, T. Pätilä, V. V. Thomas Spillmann, M. V. Tuchin, and V. Petri. 2012. A review of indocyanine green fluorescent imaging in surgery. J. Biomed. Img. 2012:7.
  • Alfano, R. R., J. H. Ali, W. Wang, and M. Zevallos. “Detecting human cancer through spectral optical imaging using key water absorption wavelengths“. U.S. Patent 7,706,862, issued April 27, 2010.
  • Alfano, R. R., A. K. SingaraveluGanesan, and Y. Yuanlong. “Detection of cancer and precancerous conditions in tissues and/or cells using native fluorescence excitation spectroscopy“. U.S. Patent 6,091,985, issued July 18, 2000.
  • Aminzadeh, R., M. Saviz, and A. A. Shishegar (2014, May). Dielectric properties estimation of normal and malignant skin tissues at millimeter-wave frequencies using effective medium theory. In 2014 22nd Iranian Conference on Electrical Engineering (ICEE) (pp. 1657–61). Tehran, Iran: IEEE.
  • An, J., J. Lee, S. H. Lee, J. Park, and B. Kim. 2009. Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal Bioanal Chem 394:801–09.
  • Artemov, D., N. M. BaasilOkollie, and Z. M. Bhujwalla. 2003. MR molecular imaging of the Her‐2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49:403–08. doi:10.1002/mrm.10406.
  • Asami, K., and T. Yonezawa. 1996. Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys. J. 71:2192–200.
  • Backman, V., M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican and S. Shapshay. 2000. Detection of preinvasive cancer cells. Nature 406:35.
  • Bateman, J. B., J. Wagman, and E. L. Carstensen. 1966. Refraction and absorption of light in bacterial suspensions. Kolloid-Z.Z. Polym. 208:44–58.
  • Bixler, J. N., M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully. “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy“. Proceedings of the National Academy of Sciences 111, no. 20 (2014): 7208–11. USA.
  • Bourgaize, D., T. R. Jewell, and R. G. Buiser. Biotechnology: Demystifying the concepts. Benjamin/ Cummings, 2000.
  • Cameron, I. L., N. K. R. Smith, T. B. Pool, and R. L. Sparks. 1980. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res. 40:1493–500.
  • Carvalho, S., E. NunoGueiral, R. Henrique, L. Oliveira, and V. V. Tuchin. 2016. Wavelength dependence of the refractive index of human colorectal tissues: Comparison between healthy mucosa and cancer. J. Biomed. Photo. Engg 2.
  • Cheng, Y., and M. Fu. 2018. Dielectric properties for non‐invasive detection of normal, benign, and malignant breast tissues using microwave theories. Thorac. Cancer 9:459–65.
  • Cheong, W.-F., S. A. Prahl, and A. J. Welch. 1990. A review of the optical properties of biological tissues. IEEE J. Quantum. Electron. 26:2166–85.
  • Choi, J. W., J. Cho, Y. Lee, J. Yim, B. Kang, K. K. Oh, … Y. Kwon. 2004. Microwave detection of metastasized breast cancer cells in the lymph node; potential application for sentinel lymphadenectomy. Breast Cancer Res. Treat. 86:107–15.
  • Choi, W., C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld. 2007. Tomographic phase microscopy. Nat. Methods 4:717.
  • Cole, K. S., and R. H. Cole. 1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9:341–51.
  • Cone, M. T., J. D. Mason, E. Figueroa, B. H. Hokr, J. N. Bixler, C. C. Castellanos, G. D. Noojin, J.C. Wigle, B.A. Wigle, V.V. Yakovlev and E.S. Fry. 2015a. Measuring the absorption coefficient of biological materials using integrating cavity ring-down spectroscopy. Optica. 2:162–68.
  • Cone, M. T., J. A. Musser, E. Figueroa, J. D. Mason, and E. S. Fry. 2015b. Diffuse reflecting material for integrating cavity spectroscopy, including ring-down spectroscopy. Appl. Opt. 54:334–46.
  • Das, L., S. Das, and J. Chatterjee. 2015. Electrical bioimpedance analysis: A new method in cervical cancer screening. J. Med. Engg 2015: 636075, 5 pages.
  • Dragomir, N. M., X. M. Goh, and A. Roberts. 2008. Three‐dimensional refractive index reconstruction with quantitative phase tomography. Microsc. Res. Tech. 71:5–10.
  • Flock, S. T., M. S. Patterson, B. C. Wilson, and D. R. Wyman. 1989. Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng. 36:1162–68.
  • Glasstone, S., and M. C. Edlund. 1952. The elements of nuclear reactor theory. New York: D. van Nostrand.
  • Gourley, P. L., and R. K. Naviaux. 2005. Optical phenotyping of human mitochondria in a biocavity laser. IEEE J. Sel. Top. Quantum Electron. 11:818–26.
  • Gray, D. J., G. W. Kattawar, and E. S. Fry. 2006. Design and analysis of a flow-through integrating cavity absorption meter. Appl. Opt. 45:8990–98.
  • Grenier, K., D. Dubuc, M. Poupot, and J. J. Fournié (2011, January). Microwave signatures of alive B-lymphoma cells suspensions. In 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (pp. 95–98). Phoenix, AZ, USA: IEEE.
  • Grosenick, D., H. Rinneberg, R. Cubeddu, and P. Taroni. 2016. Review of optical breast imaging and spectroscopy. J. Biomed. Opt. 21:091311.
  • Guy, A. W. 1971. Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans. Microw. Theory Tech. 19:205–14.
  • Halter, R. J., A. Schned, J. Heaney, A. Hartov, S. Schutz, and K. D. Paulsen. 2008. Electrical impedance spectroscopy of benign and malignant prostatic tissues. J. Urol. 179:1580–86.
  • Hammouda, O. K., and A. M. M. Allam. 2014. Diagnosis Of Oral Cancers Using Implanted Antennas. Skin 1:38–007.
  • Hashimshony, D. “Method and system for examining tissue according to the dielectric properties thereof“. U.S. Patent 6,813,515, issued November 2, 2004.
  • Heinitz, J., and O. Minet. “Dielectric properties of female breast tumors“. In Ninth International Conference on Electrical Bio-Impedance, Heidelberg, Germany, vol. 55, pp. 356–59. 1995.
  • Holboke, M. J., B. J. Tromberg, L. Xingde, J. Natasha Shah, F. D. Kidney, J. Butler, B. Chance, and A. G. Yodh. “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject“. (2000): 237–47.
  • Hossain, S. 2020. Biodielectric phenomenon for actively differentiating malignant and normal cells: An overview. In Electromagnetic Biology and Medicine, 1–8. Taylor and Francis.
  • Hossain, S., and A. Abdelgawad. 2020. Analysis of membrane permeability due to synergistic effect of controlled shock wave and electric field application. Electromagn Biol Med 39:20–29.
  • Hsu, W.-C., S. Jing-Wei, T.-Y. Tseng, and K.-B. Sung. 2014. Tomographic diffractive microscopy of living cells based on a common-path configuration. Opt Lett 39:2210–13.
  • Hu, Q., S. Hossain, and R. P. Joshi. 2018. Analysis of a dual shock-wave and ultrashort electric pulsing strategy for electro-manipulation of membrane nanopores. J. Phys. D: Appl. Phys. 51:285403.
  • Hu, Y., N. Zhao, T. Gan, J. Duan, H. J. Yu, D. Meng, J. Liu, and W. Liu. 2017. Analytic Method on Characteristic Parameters of Bacteria in Water by Multiwavelength Transmission Spectroscopy. J. Spectrosc. 2017: 4039048.
  • Hussein, M., F. Awwad, D. Jithin, H. El Hasasna, K. Athamneh, and R. Iratni. 2019. Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Sci. Rep. 9:4681. doi:10.1038/s41598-019-41124-1.
  • Huynh, P. T., A. M. Jarolimek, and S. Daye. 1998. The false-negative mammogram. Radiographics 18:1137–54.
  • Jacques, S. L. 2013. Optical properties of biological tissues: A review. Phys. Med. Biol. 58:R37.
  • Jacques, S. L., C. A. Alter, and S. A. Prahl. 1987. Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci. 1:309–33.
  • Jacques, S. L., and S. A. Prahl. 1987. Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg Med 6:494–503.
  • Jain, N. L., and C. Friedman. “Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports“. In Proceedings of the AMIA Annual Fall Symposium, p. 829. American Medical Informatics Association, 1997. Nashville, TN.
  • Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle. 1994. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med. Phys. 21:547–50.
  • Laufer, S., A. Ivorra, V. E. Reuter, B. Rubinsky, and S. B. Solomon. 2010. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol. Meas. 31:995.
  • Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness. 2007a. Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies. IEEE Microw. Wirel. Compon. Lett. 17:822–24.
  • Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, … W. Temple. 2007b. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 52:6093.
  • Lehmann, J. F., A. W. Guy, D. J. Barbara Jane, B. Stonebridge, and C. G. Warren. 1968. Heating patterns produced by short-wave diathermy using helical induction coil applicators. Arch. Phys. Med. Rehabil. 49:193–98.
  • Lehmann, J. F., B. J. DeLateur, and J. B. Stonebridge. 1969. Selective muscle heating by shortwave diathermy with a helical coil. Arch. Phys. Med. Rehabil. 50:117–23.
  • Leonardi, L. “Multiwavelength and photon time-of-flight for quantitative constituent measurement in scattering media and tissue“. (2000): 6070–6070.
  • Lerman, C., B. K. Bruce Trock, C. J. Rimer, D. Brody, and A. Boyce. 1991. Psychological side effects of breast cancer screening. Health Psychol. 10:259.
  • Liang, X. J., A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap. 2007. Determining refractive index of single living cell using an integrated microchip. Sens. Actuators A Phys. 133:349–54.
  • Liu, P. Y., L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung,   T.C. Ayi, P.H. Yap, B. Liedberg, K. Wang. 2016. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16:634–44.
  • Lualdi, M., A. Colombo, B. Farina, S. Tomatis, and R. Marchesini. 2001. A phantom with tissue‐like optical properties in the visible and near infrared for use in photomedicine. Laser Med. Sci. 28:237–43.
  • Mahanta, L. B., D. C. Nath, and C. K. Nath. 2012. Cervix cancer diagnosis from pap smear images using structure based segmentation and shape analysis. J. Emerg. Trends Comput. Inform. Sci. 3:245–49.
  • Mahmoud, S. A., A. Shereen, and A. TarawnhMou’ad. 2011. Structural and optical dispersion characterisation of sprayed nickel oxide thin films. J. Mod.Phys. 2:1178.
  • Martellosio, A., M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti, F. Svelto, P. E. Summers, G. Renne, L. Preda, and M. Bellomi. 2016. Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues. IEEE Trans. Microw. Theory Tech. 65:998–1011.
  • Mattley, Y., G. Leparc, R. Potter, and G. Luis. 2000. Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data. Photochem. Photobiol. 71:610–19.
  • Morimoto, T., Y. Kinouchi, T. Iritani, S. Kimura, Y. Konishi, N. Mitsuyama, K. Komaki, and Y. Monden. 1990. Measurement of the electrical bio-impedance of breast tumors. Eur. Surg. Res. 22:86–92.
  • Muellner, K., G. E. Elisabeth Bodner, G. W. Mannor, T. Hofmann, and W. Luxenberger. 2000. Endolacrimal laser assisted lacrimal surgery. Br. J. Ophthalmol. 84:16–18.
  • Munnerlyn, C. R., S. J. Koons, and J. Marshall. 1988. Photorefractive keratectomy: A technique for laser refractive surgery. J Cataract Refract Surg 14:46–52.
  • Musser, J. A., E. S. Fry, and D. J. Gray. 2009. Flow-through integrating cavity absorption meter: Experimental results. Appl. Opt. 48:3596–602.
  • Narain, P. D., M. Evangelin Jenifer, P. Poongodi, and J. Samuel Manoharan. 2011. A survey on the preprocessing techniques of mammogram for the detection of breast cancer. J. Emerg. Trends Comput. Inform. Sci. 2:656–64.
  • Nerguizian, V., A. Alazzam, I. Stiharu, and J. M. Burnier. 2017. Characterization of several cancer cell lines at microwave frequencies. Measurement 109:354–58.
  • Nizamoglu, S., M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. Hahn, G. Scarcelli, M.Randolph, R.W. Redmond, S.H. Yun. 2016. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 7:10374.
  • Novikova, T. 2017. Optical techniques for cervical neoplasia detection. Beilstein J Nanotechnol 8:1844–62.
  • Ntziachristos, V. A., G. Yodh, M. Schnall, and B. Chance. (2000). “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement“. Proceedings of the National Academy of Sciences 97:2767–72. USA.
  • O’rourke, A. P., M. Lazebnik, J. M. Bertram, M. C. Converse, S. C. Hagness, J. G. Webster, and D. M. Mahvi. 2007. Dielectric properties of human normal, malignant and cirrhotic liver tissue: In vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys. Med. Biol. 52:4707.
  • Parrish, J. A. 1981. New concepts in therapeutic photomedicine; photochemistry, optical targeting and the therapeutic window. J. Invest. Dermatol. 77:45–50.
  • Pisano, E. D., J. Earp, M. Schell, K. Vokaty, and A. Denham. 1998. Screening behavior of women after a false-positive mammogram. Radiology 208:245–49.
  • Qiao, G., W. Duan, C. Chatwin, A. Sinclair, and W. Wang (2010). Electrical properties of breast cancer cells from impedance measurement of cell suspensions. In Journal of Physics: conference series 224:012081. University of Florida, Florida, USA: IOP Publishing.
  • Quan, B., X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, … G. Xu. 2017. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 728:1065–75.
  • Raju, T. N. “The Nobel chronicles. 1931: Otto Heinrich Warburg (1883–1970)“. (1998): 2028–2028.
  • Richardson, D. S., and J. W. Lichtman. 2015. Clarifying tissue clearing. Cell 162:246–57.
  • Salmanzadeh, A., M. B. Sano, R. C. Gallo-Villanueva, P. C. Roberts, E. M. Schmelz, and R. V. Davalos. 2013. Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells. Biomicrofluidics 7:011809.
  • Salomatina, E. V., B. Jiang, J. Novak, and A. N. Yaroslavsky. 2006. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11:064026. doi:10.1117/1.2398928.
  • Sano, M. B., J. L. Caldwell, and R. V. Davalos. 2011. Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples. Biosens. Bioelectron. 30:13–20.
  • Sarfaty, M., and A. Lev. “Electrical methods for detection and characterization of abnormal tissue and cells“. U.S. Patent 8,437,845, issued May 7, 2013.
  • Schwan, H. P., and S. Takashima. “Electrical conduction and dielectric behavior in biological systems“. digital Encyclopedia of Applied Physics (2003).
  • Seeger, P. G., and S. Wolz. “Succesful Biological Contol of Cancer“. (1990).
  • Slizynski, R. A., and D. J. Mishelevich. “Use of impedance techniques in breast-mass detection“. U.S. Patent 9,037,227, issued May 19, 2015.
  • Soenksen, D. C., G. McNamara, Y. Garini, and N. Katzir. “Method of cancer cell detection“. U.S. Patent 5,995,645, issued November 30, 1999.
  • Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatsis. 2000. Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography. IEEE Trans. Microw. Theory Tech. 48:1413–15.
  • Surowiec, A. J., S. S. Stuchly, J. Robin Barr, and A. A. S. A. Swarup. 1988. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans. Biomed. Eng. 35:257–63.
  • Tamura, T., M. Tenhunen, T. Lahtinen, T. Repo, and H. P. Schwan. 1994. Modelling of the dielectric properties of normal and irradiated skin. Phys. Med. Biol. 39:927.
  • Tromberg, B. J., N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler. 2000. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40.
  • Twersky, V. 1970. Absorption and multiple scattering by biological suspensions. JOSA 60:1084–93.
  • Twiggs, L. B., N. A. Chakhtoura, D. G. Ferris, L. C. Flowers, M. L. Winter, D. R. Sternfeld, M. Lashgari, A. F. Burnett, S. S. Raab, and E. J. Wilkinson. 2013. Multimodal hyperspectroscopy as a triage test for cervical neoplasia: Pivotal clinical trial results. Gynecol. Oncol. 130:147–51.
  • Van Veen, R. L. P., H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers. 2004. Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography. J. Biomed. Opt. 9:1129–37.
  • Vorlıcek, J., L. Oppl, and J. Vrba. 2010. Measurement of complex permittivity of biological tissues. In PIERS (Progress in Electromagnetics Research Symposium) Proceedings, Cambridge, USA , 599.
  • Wang, Z., and W. Che. “In-vitro and in-vivo techniques to measure the dielectric constant of biological tissues at microwave frequencies“. In 2008 International Conference on Microwave and Millimeter Wave Technology, vol. 2, pp. 922–25. Nanjing, China: IEEE, 2008.
  • Wang, Z., G. Popescu, K. V. Tangella, and A. Balla. 2011. Tissue refractive index as marker of disease. J. Biomed. Opt. 16:116017.
  • Weber, C. E. Redden, R. A. Schwarz, E. N. Atkinson, D. D. Cox, C. E. MacAulay, M. Follen, and R. R. Richards-Kortum. 2008. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer. J. Biomed. Opt. 13:064016.
  • Welch, A. J., M. JC, and V. Gemert, eds. 2011. Optical-thermal response of laser-irradiated tissue. Vol. 2. New York: Springer.
  • White, I. M., and X. Fan. 2008. On the performance quantification of resonant refractive index sensors. Opt Express 16:1020–28.
  • World Health Organization. 2005. Pharmaceuticals: Restrictions in use and availability. Geneva: World Health Organization. No. WHO/PSM/QSM/2005.2
  • Yacobi, Y. Z., J. Köhler, F. Leunert, and A. Gitelson. 2015. Phycocyanin‐specific absorption coefficient: Eliminating the effect of chlorophylls absorption. Limnol. Oceangr-Meth. 13:157–68.
  • Yang, M., and W. J. Brackenbury. 2013. Membrane potential and cancer progression. Front Physiol 4:185.
  • Yaws, K. M., D. G. Mixon, and W. P. Roach. 2007. Electromagnetic properties of tissue in the optical region. In In Optical Interactions with Tissue and Cells XVIII, Vol. 6435, 643507. International Society for Optics and Photonics. San Jose, California, United States: SPIE, BioS.
  • Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar (2008, March). Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques. In 2008 National Radio Science Conference (pp. 1–8). Tanta, Egypt: IEEE.
  • Zedek, A., D. Dubuc, and K. Grenier (2017, June). Microwave permittivity extraction of individual biological cells submitted to different stimuli. In 2017 IEEE MTT-S International Microwave Symposium (IMS) (pp. 865–68). Honololu, HI, USA: IEEE.
  • Zhang, L. Y., C. B. M. Du Puch, C. Dalmay, A. Lacroix, A. Landoulsi, J. Leroy, … S. Giraud. 2014. Discrimination of colorectal cancer cell lines using microwave biosensors. Sens. Actuators A Phys. 216:405–16.
  • Zhang, L. Y., C. B. M. Du Puch, A. Lacroix, C. Dalmay, A. Pothier, C. Lautrette, … P. Blondy (2012, June). Microwave biosensors for identifying cancer cell aggressiveness grade. In 2012 IEEE/MTT-S International Microwave Symposium Digest (pp. 1–3). Montreal, QC, Canada: IEEE.
  • Zhou, C., R. Choe, N. S. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J.A. Butler, A.E. Cerussi, B.J. Tromberg. 2007. Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. J. Biomed. Opt. 12:051903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.