1,485
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Role of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells

, &
Pages 103-116 | Received 30 Apr 2020, Accepted 01 Nov 2020, Published online: 19 Dec 2020

References

  • Altenhöfer, S., K. A. Radermacher, P. W. M. Kleikers, K. Wingler, and H. H. H. W. Schmidt. 2015. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid. Redox Signal. 23:406–27. doi:10.1089/ars.2013.5814.
  • Alvarez-Maqueda, M., R. El Bekay, J. Monteseirín, G. Alba, P. Chacón, A. Vega, C. Santa María, J. R. Tejedo, J. Martín-Nieto, F. J. Bedoya, et al. 2004. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. Atherosclerosis 172:229–38. doi:10.1016/j.atherosclerosis.2003.11.005.
  • Ayşe, I. G., A. Zafer, O. Sule, I.-T. Işil, and T. Kalkan. 2010. Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn. Biol. Med. 29:122–30. doi:10.3109/15368378.2010.502451.
  • Babior, B. M. 1999. NADPH oxidase: An update. Blood 93:1464–76. https://www.ncbi.nlm.nih.gov/pubmed/10029572.
  • Basile, A., R. Zeppa, N. Pasquino, C. Arra, M. Ammirante, M. Festa, A. Barbieri, A. Giudice, M. Pascale, M. C. Turco, et al. 2011. Exposure to 50 Hz electromagnetic field raises the levels of the anti-apoptotic protein BAG3 in melanoma cells. J Cell. Physiol. 226:2901–07. doi:10.1002/jcp.22641.
  • Bechor, E., I. Dahan, T. Fradin, Y. Berdichevsky, A. Zahavi, A. F. Gross, M. Rafalowski, and E. Pick. 2015. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.). Front. Chem. 3:3. doi:10.3389/fchem.2015.00003.
  • Bizouarn, T., G. Karimi, R. Masoud, H. Souabni, P. Machillot, X. Serfaty, F. Wien, M. Réfrégiers, C. Houée‐Levin, and L. Baciou. 2016. Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47(phox) and p67(phox) via thiol accessibility and SRCD spectroscopy. Febs J 283:2896–910. doi:10.1111/febs.13779.
  • Blackman, C. F., J. P. Blanchard, S. G. Benane, and D. E. House. 1995. The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. Faseb J 9:547–51. doi:10.1096/fasebj.9.7.7737464.
  • Blanchard, J. P., and C. F. Blackman. 1994. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–382. doi:10.1002/bem.2250150306.
  • Carlberg, M., T. Koppel, M. Ahonen, and L. Hardell. 2017. Case-control study on occupational exposure to extremely low frequency electromagnetic fields and glioma risk. Am. J. Ind. Med. 60:494–503. doi:10.1002/ajim.22707.
  • Consales, C., C. Merla, C. Marino, and B. Benassi. 2012. Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell. Biol. (2012:683897. doi:10.1155/2012/683897.
  • De Roos, A. J., K. Teschke, D. A. Savitz, C. Poole, S. Grufferman, B. H. Pollock, and A. F. Olshan. 2001. Parental occupational exposures to electromagnetic fields and radiation and the incidence of neuroblastoma in offspring. Epidemiol 12:508–17. doi:10.1097/00001648-200109000-00008.
  • Destefanis, M., M. Viano, C. Leo, G. Gervino, A. Ponzetto, and F. Silvagno. 2015. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. Int. J. Radiat. Biol. 91:964–72. doi:10.3109/09553002.2015.1101648.
  • Doroshow, J. H., S. Gaur, S. Markel, J. Lu, J. van Balgooy, T. W. Synold, B. Xi, X. Wu, and A. Juhasz. 2013. Effects of iodonium-class flavin dehydrogenase inhibitors on growth, reactive oxygen production, cell cycle progression, NADPH oxidase 1 levels, and gene expression in human colon cancer cells and xenografts. Free Radic. Biol. Med. 57:162–75. doi:10.1016/j.freeradbiomed.2013.01.002.
  • Durdik, M., P. Kosik, E. Markova, A. Somsedikova, B. Gajdosechova, E. Nikitina, E. Horvathova, K. Kozics, D. Davis, and I. Belyaev. 2019. Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci. Rep. 9:16182. doi:10.1038/s41598-019-52389-x.
  • Falone, S., S. Jr, S. V. Cordone, P. Cesare, A. Bonfigli, M. Grannonico, G. Di Emidio, C. Tatone, M. Cacchio, and F. Amicarelli. 2017. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci. Rep. 7:11470. doi:10.1038/s41598-017-11869-8.
  • Falone, S., S. Jr, S. V. Cordone, G. Di Emidio, C. Tatone, M. Cacchio, and F. Amicarelli. 2018. Extremely low-frequency magnetic fields and redox-responsive pathways linked to cancer drug resistance: Insights from co-exposure-based in vitro studies. Front. Public Health. 6:33. doi:10.3389/fpubh.2018.00033.
  • Feng, B., A. Dai, L. Chen, L. Qiu, Y. Fu, and W. Sun. 2016. NADPH oxidase-produced superoxide mediated a 50-Hz magnetic field-induced epidermal growth factor receptor clustering. Int. J. Radiat. Biol. 92:596–602. doi:10.1080/09553002.2016.1206227.
  • Forrester, S. J., T. Kawai, S. O’Brien, W. Thomas, R. C. Harris, and S. Eguchi. 2016. Epidermal growth factor receptor transactivation: Mechanisms, pathophysiology, and potential therapies in the cardiovascular system. Annu. Rev. Pharmacol. Toxicol. 56:627–53. doi:10.1146/annurev-pharmtox-070115-095427.
  • Fradin, T., E. Bechor, Y. Berdichevsky, W. Thomas, R. C. Harris, and S. Eguchi. 2018. Binding of p67 phox to Nox2 is stabilized by disulfide bonds between cysteines in the 369 Cys-Gly-Cys 371 triad in Nox2 and in p67 phox. J. Leukoc. Biol. 104:1023–39. doi:10.1002/jlb.4a0418-173r.
  • Friedman, J., S. Kraus, Y. Hauptman, Y. Schiff, and R. Seger. 2007. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem. J. 405:559–68. doi:10.1042/bj20061653.
  • George, A. J., R. D. Hannan, and W. G. Thomas. 2013. Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. Febs J 280:5258–68. doi:10.1111/febs.12509.
  • Gorzalczany, Y., N. Sigal, M. Itan, O. Lotan, and E. Pick. 2000. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly. J. Biol. Chem. 275:40073–81. doi:10.1074/jbc.m006013200.
  • Han, C. H., and M. H. Lee. 2000. Activation domain in p67phox regulates the steady state reduction of FAD in gp91phox. J. Vet. Sci. 1:27–31.
  • Heppner, D. E., and A. Van der Vliet. 2016. Redox-dependent regulation of epidermal growth factor receptor signaling. Redox Biol 8:24–27. doi:10.1016/j.redox.2015.12.002.
  • Hong, M. N., N. K. Han, H. C. Lee, Y.-K. Ko, S.-G. Chi, Y.-S. Lee, Y.-M. Gimm, S.-H. Myung, and J.-S. Lee. 2012. Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells. J. Radiat. Res. 53:79–86. doi:10.1269/jrr.11049.
  • [IARC] International Agency for Research of Cancer. IARC monograph on the evaluation of carcinogenic risks to humans, Vol. 80. Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. Lyon, France: IARC Press. (2002). Accessed on 15 July 2020: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Non-ionizing-Radiation-Part-1-Static-And-Extremely-Low-frequency-ELF-Electric-And-Magnetic-Fields-2002
  • Italiano, D., A. M. Lena, G. Melino, and E. Candi. 2012. Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 11:4589–96. doi:10.4161/cc.22853.
  • Kapri-Pardes, E., T. Hanoch, G. Maik-Rachline, M. Murbach, P. L. Bounds, N. Kuster, and R. Seger. 2017. Activation of signaling cascades by weak extremely low frequency electromagnetic fields. Cell. Physiol. Biochem. 43:1533–46. doi:10.1159/000481977.
  • Kesari, K. K., J. Juutilainen, J. Luukkonen, and J. Naarala. 2016. Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields. J. R. Soc. Interface 13:20150995. doi:10.1098/rsif.2015.0995.
  • Kitaoka, N., G. Liu, N. Masuoka, K. Yamashita, M. Manabe, and H. Kodama. 2005. Effect of sulfur amino acids on stimulus-induced superoxide generation and translocation of p47phox and p67phox to cell membrane in human neutrophils and the scavenging of free radical. Clin. Chim. Acta. 353:109–16. doi:10.1016/j.cccn.2004.10.011.
  • Kučera, J., L. Binó, K. Štefková, J. Jaroš, O. Vašíček, J. Večeřa, L. Kubala, and J. Pacherník. 2016. Apocynin and diphenyleneiodonium induce oxidative stress and modulate PI3K/Akt and MAPK/Erk activity in mouse embryonic stem cells. Oxid. Med. Cell. Longev. (2016:7409196. doi:10.1155/2016/7409196.
  • Li, Y., and M. A. Trush. 1998. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem. Biophys. Res. Commun. 253:295–99. doi:10.1006/bbrc.1998.9729.
  • Li, Y. Y., Z. M. Shi, X. T. Yu, P. Feng, and X. J. Wang. 2017. The effects of urotensin II on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-Jun N-terminal kinase pathway in human hepatoma cells. Peptides 88:106–14. doi:10.1016/j.peptides.2016.12.005.
  • Lupke, M., J. Rollwitz, and M. Simkó. 2004. Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells. Free Radic. Res. 38:985–93. doi:10.1080/10715760400000968.
  • Luukkonen, J., A. Liimatainen, J. Juutilainen, and J. Naarala. 2014. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat. Res. 760:33–41. doi:10.1016/j.mrfmmm.2013.12.002.
  • Martínez, M. A., A. Úbeda, M. A. Cid, and M. A. Trillo. 2012. The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling. Cell. Physiol. Biochem. 29:675–86. doi:10.1159/000178457.
  • Martínez, M. A., A. Úbeda, J. Moreno, and M. A. Trillo. 2016. Power frequency magnetic fields affect the p38 MAPK mediated regulation of NB69 cell proliferation implication of free radicals. Int. J. Mol. Sci. 17:510. doi:10.3390/ijms17040510.
  • Martínez, M. A., A. Úbeda, and M. A. Trillo. 2019. Involvement of the EGF receptor in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells. Cell. Physiol. Biochem. 52:893–907. doi:10.33594/000000062.
  • Mattsson, M. O., and M. Simkó. 2014. Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in vitro studies. Front. Public. Health 2:132. doi:10.3389/fpubh.2014.00132.
  • Merla, C., M. Liberti, C. Consales, A. Denzi, F. Apollonio, C. Marino, and B. Benassi. 2019. Evidences of plasma membrane-mediated ROS generation upon ELF exposure in neuroblastoma cells supported by a computational multiscale approach. Biochim. Biophys. Acta Biomembr. 1861:1446–57. doi:10.1016/j.bbamem.2019.06.005.
  • Nauseef, W. M. 2008. Biological roles for the NOX family NADPH oxidases. J. Biol. Chem 283:16961–65. https://www.ncbi.nlm.nih.gov/pubmed/18420576.
  • Paletta-Silva, R., N. Rocco-Machado, and J. R. Meyer-Fernandes. 2013. NADPH oxidase biology and the regulation of tyrosine kinase receptor signaling and cancer drug cytotoxicity. Int. J. Mol. Sci. 14:3683–704. doi:10.3390/ijms14023683.
  • Piras, S., A. L. Furfaro, R. Caggiano, L. Brondolo, S. Garibaldi, C. Ivaldo, U. M. Marinari, M. A. Pronzato, R. Faraonio, and M. Nitti. 2018. MicroRNa-494 favors ho-1 expression in neuroblastoma cells exposed to oxidative stress in a Bach1-independent way. Front. Oncol. 8:199. doi:10.3389/fonc.2018.00199.
  • Poniedziałek, B., P. Rzymski, J. Karczewski, F. Jaroszyk, and K. Wiktorowicz. 2013. Reactive oxygen species (ROS) production in human peripheral blood neutrophils exposed in vitro to static magnetic field. Electromagn. Biol. Med. 32:560–68. doi:10.3109/15368378.2013.773910.
  • Rezatabar, S., A. Karimian, V. Rameshknia, H. Parsian, M. Majidinia, T. A. Kopi, A. Bishayee, A. Sadeghinia, M. Yousefi, M. Monirialamdari, et al. 2019. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 234:14951–65. doi:10.1002/jcp.28334.
  • Rollwitz, J., M. Lupke, and M. Simkó. 2004. Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim. Biophys. Acta. 1674:231–38. doi:10.1016/j.bbagen.2004.06.024.
  • Ruiz-Gómez, M. J., and M. Martínez-Morillo. 2009. Electromagnetic fields and the induction of DNA strand breaks. Electromagn. Biol. Med 28:201–14. doi:10.1080/15368370802608696.
  • Santini, M. T., G. Rainaldi, and P. L. Indovina. 2009. Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int. J. Radiat. Biol. 85:294–313. doi:10.1080/09553000902781097.
  • [SCENIHR]Scientific Committee on Emerging and Newly Identified Health Risks: Health effects of exposure to EMF. (2009). Accessed on 15 July 2020: https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_022.pdf
  • Schieber, M., and N. S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453–462. doi:10.1016/j.cub.2014.03.034.
  • Seo, J. S., J. Y. Park, J. Choi, T. K. Kim, J. H. Shin, J. K. Lee, and P. L. Han. 2012. NADPH oxidase mediates depressive behavior induced by chronic stress in mice. NADPH oxidase mediates depressive behavior induced by chronic stress in mice. J. Neurosci 32:9690–99.
  • Sheikh, A., A. Takatori, M. S. Hossain, M. K. Hasan, M. Tagawa, H. Nagase, and A. Nakagawara. 2016. Unfavorable neuroblastoma prognostic factor NLRR2 inhibits cell differentiation by transcriptional induction through JNK pathway. Cancer Sci 107:1223–32. doi:10.1111/cas.13003.
  • Song, K., S. H. Im, Y. J. Yoon, H. M. Kim, H. J. Lee, and G. S. Park. 2018. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One 13. doi:10.1371/journal.pone.0199753.
  • Sulpizio, M., S. Falone, F. Amicarelli, M. Marchisio, F. Di Giuseppe, E. Eleuterio, C. Di Ilio, and S. Angelucci. 2011. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J. Cell. Biochem. 112:3797–806. doi:10.1002/jcb.23310.
  • Sumimoto, H. 2008. Structure, regulation and evolution of nox-family NADPH oxidases that produce reactive oxygen species. Febs J 275:3249–77. doi:10.1111/j.1742-4658.2008.06488.x.
  • Sun, L., L. Chen, L. Bai, Y. Xia, X. Yang, W. Jiang, and W. Sun. 2018. Reactive oxygen species mediates 50-Hz magnetic field-induced EGF receptor clustering via acid sphingomyelinase activation. Int. J. Radiat. Biol. 94:678–84. doi:10.1080/09553002.2018.1466208.
  • Sun, W. J., H. Chiang, Y. T. Fu, Y. N. Yu, H. Y. Xie, and D. Q. Lu. 2001. Exposure to 50 Hz electromagnetic fields induces the phosphorylation and activity of stress-activated protein kinase in cultured cells. Electro- and Magnetobiol 20:415–23. doi:10.1081/JBC-100108579.
  • Tormos, A. M., R. Taléns-Visconti, A. R. Nebreda, and J. Sastre. 2013. p38 MAPK: A dual role in hepatocyte proliferation through reactive oxygen species. Free Radic. Res. 47:905–16. doi:10.3109/10715762.2013.821200.
  • Touyz, R. M., X. Chen, F. Tabet, G. Yao, G. He, M. T. Quinn, P. J. Pagano, and E. L. Schiffrin. 2002. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: Regulation by angiotensin II. Circ. Res. 90:1205–13. doi:10.1161/01.res.0000020404.01971.2f.
  • Trillo, M. A., M. A. Martínez, M. A. Cid, J. Leal, and A. Úbeda. 2012. Influence of a 50 Hz magnetic field and of all-trans-retinol on the proliferation of human cancer cell lines. Int. J. Oncol. 40:1405–13. doi:10.3892/ijo.2012.1347.
  • Tseng, H. Y., Z. M. Liu, and H. S. Huang. 2012. NADPH oxidase-produced superoxide mediates EGFR transactivation by c-Src in arsenic trioxide-stimulated human keratinocytes. Arch. Toxicol. 86:935–45. doi:10.33594/000000062.
  • Turner, M. C., G. Benke, J. D. Bowman, J. Figuerola, S. Fleming, M. Hours, L. Kincl, D. Krewski, D. McLean, M.-E. Parent, et al. 2017. Interactions between occupational exposure to extremely low frequency magnetic fields and chemicals for brain tumour risk in the INTEROCC study. Occup. Environ. Med. 74:802–09. doi:10.1136/oemed-2016-104080.
  • Venkatachalam, K., S. Mummidi, D. M. Cortez, S. D. Prabhu, A. J. Valente, and B. Chandrasekar. 2008. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am. J. Physiol. Heart. Circ. Physiol. 294:H2078–2087. doi:10.1152/ajpheart.01363.2007.
  • Wang, H., and X. Zhang. 2017. Magnetic fields and reactive oxygen species. Int. J. Mol. Sci. 18:2175. doi:10.3390/ijms18102175.
  • Wang, Y., and M. F. Lou. 2009. The regulation of NADPH oxidase and its association with cell proliferation in human lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 50:2291–300. doi:10.1167/iovs.08-2568.
  • Wu, Q., W. Wu, B. Fu, L. Shi, X. Wang, and K. Kuca. 2019. JNK signaling in cancer cell survival. Med. Res. Rev. 39:2082–104. doi:10.1002/med.21574.
  • Yakymenko, I., O. Tsybulin, E. Sidorik, D. Henshel, O. Kyrylenko, and S. Kyrylenko. 2016. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn. Biol. Med. 35:186–202. doi:10.3109/15368378.2015.1043557.
  • Yan, L., S. Liu, C. Wang, F. Wang, Y. Song, N. Yan, S. Xi, Z. Liu, and G. Sun. 2013. JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediators Inflamm 2013:895975. doi:10.1155/2013/895975.