518
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Possible effects of different doses of 2.1 GHz electromagnetic radiation on learning, and hippocampal levels of cholinergic biomarkers in Wistar rats

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 179-190 | Received 11 Jun 2020, Accepted 01 Nov 2020, Published online: 01 Dec 2020

References

  • Alkis, M. E., H. M. Bilgin, V. Akpolat., et al. 2019. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 38:32–47. doi:10.1080/15368378.2019.1567526.
  • Altun, G., O. G. Deniz, K. K. Yurt, D. Davis, and S. Kaplan. 2018. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environ. Res. 167:700–07. doi:10.1016/j.envres.2018.02.031.
  • Banaceur, S., S. Banasr, M. Sakly, and H. Abdelmelek. 2013. Whole body exposure to 2.4 GHz WIFI signals: Effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer’s disease (3xTg-AD). Behav. Brain Res. 240:197–201. doi:10.1016/j.bbr.2012.11.021.
  • Birks, L., M. Guxens, E. Papadopoulou, J. Alexander, F. Ballester, M. Estarlich, M. Gallastegi, M. Ha, M. Haugen, A. Huss, et al. 2017. Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts. Environ. Int. 104:122–31. doi:10.1016/j.envint.2017.03.024.
  • Calvente, I., R. Perez-Lobato, M. I. Nunez., et al. 2016. Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys? Bioelectromagnetics 37:25–36. doi:10.1002/bem.21951.
  • Cassel, J. C., B. Cosquer, R. Galani, and N. Kuster. 2004. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav. Brain Res. 155:37–43. doi:10.1016/j.bbr.2004.03.031.
  • Chauhan, P., H. N. Verma, R. Sisodia, and K. K. Kesari. 2017. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats. Electromagn. Biol. Med. 36:20–30.
  • Cho, S. I., Y. S. Nam, L. Y. Chu, J. H. Lee, J. S. Bang, H. R. Kim, H.-C. Kim, Y. J. Lee, H.-D. Kim, J. D. Sul, et al. 2012. Extremely low-frequency magnetic fields modulate nitric oxide signaling in rat brain. Bioelectromagnetics 33:568–74. doi:10.1002/bem.21715.
  • Cuccurazzu, B., L. Leone, M. V. Podda., et al. 2010. Exposure to extremelylow-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp. Neurol. 226:173–82. doi:10.1016/j.expneurol.2010.08.022.
  • Deiana, S., B. Platt, and G. Riedel. 2011. The cholinergic system and spatial learning. Behav. Brain Res. 221:389–411. doi:10.1016/j.bbr.2010.11.036.
  • Esmaili, M. H., H. Masoumi, M. Jadidi, H. Miladi-Gorji, and H. Nazari. 2017. The effects of acute mobile phone radiation on the anxiety level of male rats. Middle East J. Rehabil. Health 4. doi:10.5812/mejrh.43478.
  • Ferreira-Vieira, T. H., I. M. Guimaraes, F. R. Silva, and F. M. Ribeiro. 2016. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 14:101–15. doi:10.2174/1570159X13666150716165726.
  • Fu, Y., C. Wang, J. Wang, Y. Lei, and Y. Ma. 2008. Long-term exposure to extremely low-frequency magnetic fields impairs spatial recognition memory in mice. Clin. Exp. Pharmacol. Physiol. 35:797–800. doi:10.1111/j.1440-1681.2008.04922.x.
  • Gabriel, S., R. W. Lau, and C. Gabriel. 1996. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251–69. doi:10.1088/0031-9155/41/11/002.
  • Gokcek-Sarac, C., O. Adali, and E. Jakubowska-Dogru. 2013. Hippocampal levels of ChAT, PKA, phospho-PKA and phospho-CaMKIIalpha but not CaMKIIalpha positively correlate with spatial learning skills in rats. Neurosci. Lett. 545:112–16. doi:10.1016/j.neulet.2013.04.046.
  • Gokcek-Sarac, C., and H. Er. 2017. Effects of different duration time of exposure to 2100 MHz electromagnetic radiation on behaviour and hippocampal levels of protein kinases on rats. J. Neurol. Sci. [Turkish] 34:322–31.
  • Gokcek-Sarac, C., H. Er, C. Kencebay Manas, D. Kantar Gok, S. Ozen, and N. Derin. 2017. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int. J. Radiat. Biol. 93:980–89.
  • Goncalves, J. F., F. T. Nicoloso, P. da Costa, J. G. Farias, F. B. Carvalho, M. M. da Rosa, J. M. Gutierres, F. H. Abdalla, J. S. F. Pereira, G. R. M. Dias, et al. 2012. Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food Chem. Toxicol. 50:3709–18. doi:10.1016/j.fct.2012.07.016.
  • Gupta, S. K., M. K. Mesharam, and S. Krishnamurthy. 2018. Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J. Biosci. 43:263–76. doi:10.1007/s12038-018-9744-7.
  • Hao, D., L. Yang, S. Chen., et al. 2013. Effects of long-term electromagnetic field exposure on spatial learning and memory in rats. Neurol. Sci. 34:157–64.
  • Himmelheber, A. M., M. Sarter, and J. P. Bruno. 2000. Increases in cortical acetylcholine release during sustained attention performance in rats. Cognitive Brain Research 9:313–25. doi:10.1016/S0926-6410(00)00012-4.
  • ICNIRP. 2009. ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”. Health Phys. 97: 257–58. doi:10.1097/HP.0b013e3181aff9db.
  • ICNIRP. 2020. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 118: 483–524. doi:10.1097/HP.0000000000001210.
  • Jeong, Y. J., G.-Y. Kang, J. H. Kwon., et al. 2015. 1950 MHz electromagnetic fields ameliorate Aβ pathology in Alzheimer’s disease mice. Curr.t Alzheimer Res. 12:481–92. doi:10.2174/156720501205150526114448.
  • Jiang, D.-P., J.-H. Li, J. Zhang, S.-L. Xu, F. Kuang, H.-Y. Lang, Y.-F. Wang, G.-Z. An, J. Li, G.-Z. Guo, et al. 2016. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res. 1642:10–19. doi:10.1016/j.brainres.2016.02.053.
  • Karakurt, S., E. Pehlivan, and S. Karakurt. 2019. Removal of carcinogenic arsenic from drinking water by the application of ion exchange resins. Oncogene 2:1–8.
  • Kesari, K. K., R. Meena, J. Nirala, J. Kumar, and H. N. Verma. 2014. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain. Cell Biochemistry and Biophysics 68:347–58. doi:10.1007/s12013-013-9715-4.
  • Kim, J. H., J.-K. Lee, H.-G. Kim, K.-B. Kim, and H. R. Kim. 2019. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomolecules & Therapeutics 27:265–75. doi:10.4062/biomolther.2018.152.
  • Kim, J. H., U. D. Sohn, H.-G. Kim, and H. R. Kim. 2018a. Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. The Korean Journal of Physiology & Pharmacology 22:277–89. doi:10.4196/kjpp.2018.22.3.277.
  • Kim, J. H., D.-H. Yu, H.-J. Kim., et al. 2018b. Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice. Toxicology and Industrial Health 34:23–35. doi:10.1177/0748233717740066.
  • Kim, J.-Y., S.-Y. Hong, Y.-M. Lee., et al. 2008. In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test. Environmental Toxicology 23:319–27. doi:10.1002/tox.20347.
  • Kleinlogel, H., T. Dierks, T. Koenig, H. Lehmann, A. Minder, and R. Berz. 2008. Effects of weak mobile phone-Electromagnetic fields (GSM, UMTS) on event related potentials and cognitive functions. Bioelectromagnetics 29:488–97. doi:10.1002/bem.20418.
  • Klinkenberg, I., A. Sambeth, and A. Blokland. 2011. Acetylcholine and attention. Behav. Brain Res. 221:430–42. doi:10.1016/j.bbr.2010.11.033.
  • Kunjilwar, K. K., and J. Behari. 1993. Effect of amplitude-modulated radio frequency radiation on cholinergic system of developing rats. Brain Res. 601:321–24. doi:10.1016/0006-8993(93)91729-C.
  • Langer, C. E., P. de Llobet, A. Dalmau, J. Wiart, G. Goedhart, M. Hours, G. P. Benke, E. Bouka, R. Bruchim, K.-H. Choi, et al. 2017. Patterns of cellular phone use among young people in 12 countries: Implications for RF exposure. Environment International 107:65–74. doi:10.1016/j.envint.2017.06.002.
  • Leuner, B., and E. Gould. 2010. Structural plasticity and hippocampal function. Annual Review of Psychology 61:C111–113. doi:10.1146/annurev.psych.093008.100359.
  • Lisman, J., G. Buzsaki, H. Eichenbaum, L. Nadel, C. Ranganath, and A. D. Redish. 2017. Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20:1434–47.
  • Maaroufi, K., L. Had-Aissouni, C. Melon., et al. 2014. Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload. Behav. Brain Res. 258:80–89.
  • Martyn, A. C., X. De Jaeger, A. C. Magalhaes., et al. 2012. Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proc. Natl. Acad. Sci. U.S.A. 109:17651–56.
  • Megha, K., P. S. Deshmukh, B. D. Banerjee, A. K. Tripathi, R. Ahmed, and M. P. Abegaonkar. 2015. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology 51:158–65.
  • Morgan, L. L., A. B. Miller, A. Sasco, and D. L. Davis. 2015. Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A) (review). Int. J. Oncol. 46:1865–71.
  • Narayanan, S. N., R. S. Kumar, B. K. Potu, S. Nayak, P. G. Bhat, and M. Mailankot. 2010. Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats. Ups. J. Med. Sci. 115:91–96.
  • Narayanan, S. N., R. S. Kumar, B. K. Potu, S. Nayak, and M. Mailankot. 2009. Spatial memory performance of Wistar rats exposed to mobile phone. Clinics (Sao Paulo) 64:231–34.
  • Nittby, H., A. Brun, J. Eberhardt, L. Malmgren, B. R. Persson, and L. G. Salford. 2009. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 16:103–12.
  • Nittby, H., G. Grafstrom, D. P. Tian., et al. 2008. Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29:219–32.
  • Obajuluwa, A. O., A. J. Akinyemi, O. B. Afolabi, K. Adekoya, J. O. Sanya, and A. O. Ishola. 2017. Exposure to radio-frequency electromagnetic waves alters acetylcholinesterase gene expression, exploratory and motor coordination-linked behaviour in male rats. Toxicol. Rep. 4:530–34.
  • Oda, Y. 1999. Choline acetyltransferase: The structure, distribution and pathologic changes in the central nervous system. Pathol. Int. 49:921–37.
  • Parhizkar, A., F. Ganji, Z. Nazari, and H. Sepehri. 2017. Effects of filgrastim on gene expression of cholinergic system in the rat hippocampus. Natl. J. Physiol. Pharm. Pharmacol. 7:513–16.
  • Prado, V. F., H. Janickova, M. A. Al-Onaizi, and M. A. Prado. 2017. Cholinergic circuits in cognitive flexibility. Neuroscience 345:130–41.
  • Prado, V. F., C. Martins-Silva, B. M. de Castro, R. F. Lima, D. M. Barros, and E. Amaral. 2006. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51:601–12.
  • Rima, M., Y. Lattouf, M. Abi Younes., et al. 2020. Dynamic regulation of the cholinergic system in the spinal central nervous system. Sci. Rep. 10:5338.
  • Ruediger, H. W. 2009. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 16:89–102.
  • Sakhnini, L., S. Al-Ghareeb, S. Khalil, R. Ahmed, A. A. Ameer, and A. Kamal. 2018. Effects of exposure to 50 Hz electromagnetic fields on Morris water-maze performance of prenatal and neonatal mice. J. Assoc. Arab Univ. Basic Appl. Sci. 15:1–5.
  • Salford, L. G., A. E. Brun, J. L. Eberhardt, L. Malmgren, and B. R. Persson. 2003. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111:881–83. discussion A408.
  • Singh, S., and N. Kapoor. 2014. Health implications of electromagnetic fields, mechanisms of action, and research needs. Adv. Biol. 1–24.
  • Son, Y., J. S. Kim, Y. J. Jeong., et al. 2018. Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci. Lett. 666:64–69.
  • Sun, Y., Z. Zhao, Q. Li., et al. 2020. DI-3-n-butylphthalide regulates cholinergic dysfunction in chronic cerebral hypoperfusion rats. J. Int. Med. Res. 48:1–12.
  • Tamasidze, A. G., and M. I. Nikolaishvili. 2007. Effect of high-frequency EMF on public health and its neuro-chemical investigations. Georgian Med. News. 142:58–60.
  • Vander Vorst, A., A. Rosen, and Y. Kotsuka. 2006. RF/microwave interaction with biological tissues. Vol. 181. New Jersey: John Wiley & Sons.
  • Voss, J. L., D. J. Bridge, N. J. Cohen, and J. A. Walker. 2017. A closer look at the hippocampus and memory. Trends Cogn. Sci. (Regul. Ed.) 21:577–88.
  • Wang, B., and H. Lai. 2000. Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics 21:52–56.
  • Wang, X. C., Y. M. Xu, H. Y. Li., et al. 2018. Jiao-Tai-Wan improves cognitive dysfunctions through cholinergic pathway in scopolamine-treated mice. Biomed. Res. Int. 2018:3538763.
  • Weiland, T. 1977. A discretization method for the solution of Maxwell’s equations for six-component field. Electron. Commun. AEU 31:116–20.
  • Wevers, A. 2011. Localisation of pre- and postsynaptic cholinergic markers in the human brain. Behav. Brain Res. 221:341–55.
  • Xu, S., W. Ning, Z. Xu, S. Zhou, H. Chiang, and J. Luo. 2006. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci. Lett. 398:253–57.
  • Zhabiz, R. 2011. The finite integration technique (FIT) and the application in lithography simulations. Ph.D. Dissertation, University Erlangen-Nurnberg, Erlangen Germany.
  • Zhang, X., X. Jiang, L. Huang., et al. 2018. Central cholinergic system mediates working memory deficit induced by anesthesia/surgery in adult mice. Brain Behav. 8:e00957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.