120
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of modulation on sodium and potassium channel currents by extremely low frequency electromagnetic fields stimulation on hippocampal CA1 pyramidal cells

ORCID Icon, , , &
Pages 274-285 | Received 31 Oct 2020, Accepted 01 Feb 2021, Published online: 17 Feb 2021

References

  • Aggarwal, S. K., and A. R. Mackinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker K+ Channel. Neuron 16:1169. doi:10.1016/S0896-6273(00)80143-9.
  • Alle, H. 2006. Combined analog and action potential coding in hippocampal mossy fibers. Sci 311:1290–93. doi:10.1126/science.1119055.
  • Arendash, G. W., T. Mori, M. Dorsey, R. Gonzalez, N. Tajiri, and C. Borlongan. 2012. Electromagnetic treatment to old Alzheimer’s mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS. One 7:e35751. doi:10.1371/journal.pone.0035751.
  • Bartelt, R., M. Oettmeier, C. Heising, V. Staudt, and A. Steimel. 2010. Improvement of low-frequency system stability in 16.7-Hz railway-power grids by multivariable line-converter control in a multiple traction-vehicle scenario. Electrical Systems for Aircraft, Railway and Ship Propulsion 1:1–6. doi:10.1109/ESARS.2010.5665234.
  • Bulteau, S., V. Sébille, G. Fayet, V. Thomas-Ollivier, T. Deschamps, A. Bonnin-Rivalland, E. Laforgue, A. Pichot, P. Valrivière, E. Auffray-Calvier, et al. 2017. Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10-Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant unipolar depression: Study protocol for a randomised controlled trial. Trials 18:17. doi:10.1186/s13063-016-1764-8.
  • Catterall, W. A. 2000. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26:13–25. doi:10.1016/S0896-6273(00)81133-2.
  • Catterall, W. A. 2012. Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J. Physiol 590:2577–89. doi:10.1113/jphysiol.2011.224204.
  • Davey, K. R., and M. Riehl. 2006. Suppressing the surface field during transcranial magnetic stimulation. IEEE. Trans. Biomed. Eng. 53:190–94. doi:10.1109/TBME.2005.862545.
  • Eichenbaum, H. 1992. The hippocampal system and declarative memory in animals. J. Cogn. Neurosci 4:217–31. doi:10.1162/jocn.1992.4.3.217.
  • Eijkelkamp, N., J. E. Linley, M. D. Baker, M. S. Minett, R. Cregg, R. Werdehausen, R. François, and J. N. Wood. 2012. Neurological perspectives on voltage-gated sodium channels. Brain 135:2585–612. doi:10.1093/brain/aws225.
  • García, A. M., A. Sisternas, and S. P. Hoyos. 2008. Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: A meta-analysis. Int. J. Epidemiol. 37:329–40. doi:10.1093/ije/dym295.
  • George, J., D. G. Baden, W. H. Gerwick, and T. F. Murray. 2012. Bidirectional influence of sodium channel activation on NMDA receptor-dependent cerebrocortical neuron structural plasticity. Proc. Natl. Acad. Sci. U.S.A. 109:19840–45. doi:10.1073/pnas.1212584109.
  • Havas, M. 2017. When theory and observation collide: Can non-ionizing radiation cause cancer? Environ. Pollut. 221:501–05. doi:10.1016/j.envpol.2016.10.018.
  • Hodgkin, A. L., and A. F. Huxley. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116:449–72. doi:10.1113/jphysiol.1952.sp004717.
  • Inhan, G. A., B. Aksu, Z. Akan, D. Akakin, A. N. Ozaydin, and T. San. 2011. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. Int. J. Radiat. Biol. 87:1155–61. doi:10.3109/09553002.2011.560992.
  • Kang, J., J. R. Huguenard, and D. A. Prince. 2000. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. J. Neurophysiol 83:70–80. doi:10.1152/jn.2000.83.1.70.
  • Kaplan, D. I., L. L. Isom, and S. Petrou. 2016. Role of Sodium Channels in Epilepsy. Cold. Spring. Harb. Perspect. Med 6:a022814. doi:10.1101/cshperspect.a022814.
  • Karimi, S. A., I. Salehi, T. Shykhi, S. Zare, and A. Komaki. 2019. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behav. Brain Res. 359:630–38. doi:10.1016/j.bbr.2018.10.002.
  • Kim, S. K., J. L. Choi, M. K. Kwon, J. Y. Choi, and D. W. Kim. 2013. Effects of 60 Hz magnetic fields on teenagers and adults. Environ. Health. 12:42. doi:10.1186/1476-069X-12-42.
  • Lai, H. 2015. Spatial learning deficit in the rat after exposure to a 60 Hz magnetic field. Bioelectromagnetics 17:494–96. doi:10.1002/(SICI)1521-186X(1996)17:6<494::AID-BEM9>3.0.CO;2-Z.
  • Larsson, H. P., O. S. Baker, D. S. Dhillon, and E. Y. Isacoff. 1996. Transmembrane Movement of the Shaker K+ Channel S4. Neuron 16:387–97. doi:10.1016/S0896-6273(00)80056-2.
  • Li, G., L. J. Cheng, and L. Lin. 2009. Effects of static magnetic fields on characteristics of neuron delayed rectifier potassium channel. J.Tianjin. Univ. 42:923–28.
  • Li, G., D. D. Li, Y. Y. Li and L. Lin. 2012. Effects of 50Hz magnetic fields with different intensities exposure on delayed rectifier potassium channel of neurons. Prog. Biochem. Biophys. 39:458–63. doi:10.3724/SP.J.1206.2011.00444.
  • Marchionni, I., A. Paffi, M. Pellegrino, M. Liberti, F. Apollonio, R. Abeti, F. Fontana, G. D’Inzeo and M. Mazzanti. 2006. Comparison between low-level 50 Hz and 900 MHz electromagnetic stimulation on single channel ionic currents and on firing frequency in dorsal root ganglion isolated neurons. Biochim. Biophys. Acta. 1758:597–605. doi:10.1016/j.bbamem.2006.03.014.
  • Marini, C., and M. Mantegazza. 2010. Na+ channelopathies and epilepsy: Recent advances and new perspectives. Expert. Rev. Clin. Pharmacol. 3:371–84. doi:10.1586/ecp.10.20.
  • Morelli, A., S. Ravera, I. Panfoli, and I. M. Pepe. 2005. Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes. Arch. Biochem. Biophys. 441:191–98. doi:10.1016/j.abb.2005.07.011.
  • Mostafa, R. M., Y. M. Mostafa, and A. Ennaceur. 2002. Effects of exposure to extremely low-frequency magnetic field of 2 G intensity on memory and corticosterone level in rats. Physiol. Behav. 76:589–95. doi:10.1016/S0031-9384(02)00730-8.
  • Nadel, L. 1991. The hippocampus and space revisited. Hippo. campus. 1:221–29. doi:10.1002/hipo.450010302.
  • Ongaro, A., K. Varani, F. F. Masieri, A. Pellati, L. Massari, R. Cadossi, F. Vincenzi, P. A. Borea, M. Fini, A. Caruso et al. 2012. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell. Physiol. 227:2461–69. doi:10.1002/jcp.22981.
  • Ouares, K. A., L. Filipis, A. Tzilivaki, P. Poirazi, and M. Canepari. 2019. Two Distinct Sets of Ca2+and K+Channels Are Activated at Different Membrane Potentials by the Climbing Fiber Synaptic Potential in Purkinje Neuron Dendrites. J. Neurosci. 39:1969–81. doi:10.1523/JNEUROSCI.2155-18.2018.
  • Ravera, S., B. Bianco, C. Cugnoli, I. Panfoli, D. Calzia, A. Morelli, and I. M. Pepe. 2010. Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 31:270–76. doi:10.1002/bem.20563.
  • Richard, D., S. Lange, T. Viergutz, R. Kriehuber, D. G. Weiss, and M. Simkó. 2002. Influence of 50 hz electromagnetic fields in combination with a tumour promoting phorbol ester on protein kinase c and cell cycle in human cells. Mol. Cell. Biochem. 232:133–41. doi:10.1023/A:1014802005672.
  • Rosen, A. D. 2003. Effects of a 125mT static magnetic field on the kinetics of voltage-gated Na+ channels in GH3 cells. Bioelectromagnetics 24:517–23. doi:10.1002/bem.10124.
  • Rubio, A. M., T. Syrovets, S. Hafner, V. Zablotskii, A. Dejneka, and T. Simmet. 2018. Spatiotemporal magnetic fields enhance cytosolic Ca 2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells. Biomaterials 163:174–84. doi:10.1016/j.biomaterials.2018.02.031.
  • Shu, Y., A. Hasenstaub, A. Duque, Y. Yu, and D. A. McCormick. 2006. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nat 441:761–65. doi:10.1038/nature04720.
  • Sienkiewicz, Z., N. Jones, and A. Bottomley. 2005. Neurobehavioural effects of electromagnetic fields. Bioelectromagnetics 26:S116–S126. doi:10.1002/bem.20141.
  • Stewart, T., M. J. Beyak, and S. Vanner. 2003a. Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J. Physiol. 552:797–807. doi:10.1113/jphysiol.2003.046409.
  • Stewart, T., M. J. Beyak, and S. Vanner. 2003b. Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J. Physiol. (Lond.) 552:797–807.
  • Suleiman, J., T. Brenner, D. Gill, F. Brilot, J. Antony, A. Vincent, B. Lang, and R. C. Dale. 2011. VGKC antibodies in pediatric encephalitis presenting with status epilepticus. Neurol 76:1252–55. doi:10.1212/WNL.0b013e3182143552.
  • Vázquezgarcía, M., D. Elíasviñas, G. Reyesguerrero, A. Domı́nguez-González, L. Verdugo-Dı́az, and R. Guevara-Guzmán. 2004. Exposure to extremely low-frequency electromagnetic fields improves social recognition in male rats. Physiol. Behav. 82:685–90. doi:10.1016/j.physbeh.2004.06.004.
  • Zablotskii, V., T. Polyakova, O. Lunov, and A. Dejneka. 2016. How a high-gradient magnetic field could affect cell life. Sci Rep 6:37407. doi:10.1038/srep37407.
  • Zaghi, S., L. D. F. Rezende, L. M. D. Oliveira, R. El-Nazer, S. Menning, L. Tadini, and F. Fregni. 2010. Inhibition of motor cortex excitability with 15 Hz transcranial alternating current stimulation (tACS). Neuroence. Lett 479:211–14. doi:10.1016/j.neulet.2010.05.060.
  • Zheng, Y., J. R. Dou, Y. Gao, L. Dong, and G. Li. 2017a. Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons. Int. J. Radiat. Biol. 93:449–55. doi:10.1080/09553002.2016.1259671.
  • Zheng, Y., W. Ma, L. Dong, J.-R. Dou, Y. Gao, and J. Xue. 2017b. Influence of the on-line ELF-EMF stimulation on the electrophysiological properties of the rat hippocampal CA1 neurons in vitro. Rev. Sci. Instrum. 88:105106. doi:10.1063/1.5006520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.