260
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer

, , , , & ORCID Icon
Pages 384-392 | Received 10 Nov 2020, Accepted 01 Feb 2021, Published online: 25 Feb 2021

References

  • Berridge, M. J. 2012. Calcium signaling remodelling and disease. Biochem. Soc. Trans. 40:297–309. doi:10.1042/BST20110766.
  • Berridge, M. J., M. D. Bootman, and H. L. Roderick. 2003. Calcium signaling: Dynamics, homeostasis, and remodeling. Nat. Rev. Mol. Cell Biol. 4:517–29. doi:10.1038/nrm1155.
  • Bootman, M. D., P. Lipp, and M. J. Berridge. 2001. The organization and functions of local Ca2+ signals. J. Cell. Sci. 114:2213–22.
  • Brizhik, L., L. Cruzeiro-Hansson, and A. Eremko. 1998. Influence of electromagnetic radiation on molecular solitons. J. Biological. Phys. 24:19–39. doi:10.1023/A:1005096714234.
  • Buckner, C. A., A. L. Buckner, S. A. Koren, M. A. Persinger, and R. M. Lafrenie. 2015. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves t-type calcium channels. PLoS ONE 10:e0124136. doi:10.1371/journal.pone.0124136.
  • Calcabrini, C., U. Mancini, R. De Bellis, A. R. Diaz, M. Martinelli, L. Cucchiarini, P. Sestili, V. Stocchi, and L. Potenza. 2017. Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544. Biotechnol. Appl. Biochem. 64:415–22. doi:10.1002/bab.1495.
  • Crocetti, S., C. Beyer, G. Schade, M. Egli, J. Frohlich, and A. Franco-Obregon. 2013. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLOS One 8:e72944. doi:10.1371/journal.pone.0072944.
  • Das, A., C. Pushparaj, N. Bahí, A. Sorolla, J. Herreros, R. Pamplona, R. Vilella, X. Matias-Guiu, R. M. Martí, and C. Cantí. 2012. Functional expression of voltage‐gated calcium channels in human melanoma. Pigment Cell Melanoma Res 25:200–12. doi:10.1111/j.1755-148X.2012.00978.x.
  • Focke, F., D. Schuermann, N. Kuster, and P. Schar. 2010. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat. Res. 683:74–83. doi:10.1016/j.mrfmmm.2009.10.012.
  • Ivancsits, S., E. Diem, O. Jahn, and H. W. Rudiger. 2003. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health 76:431–36. doi:10.1007/s00420-003-0446-5.
  • Ivancsits, S., E. Diem, A. Pilger, H. W. Rudiger, and O. Jahn. 2002. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat. Res. 519:1–13. doi:10.1016/S1383-5718(02)00109-2.
  • Koh, E. K., B.-K. Ryu, D.-Y. Jeong, I.-S. Bang, M. H. Nam, and K.-S. Chae. 2008. A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species. Int. J. Radiat. Biol. 84:945–55. doi:10.1080/09553000802460206.
  • Komazaki, S., and K. Takano. 2007. Induction of increase in intracellular calcium concentration of embryonic cells and acceleration of morphogenetic cell movements during amphibian gastrulation by a 50‐Hz magnetic field. J. Exp. Zool. 307A:156–62. doi:10.1002/jez.a.359.
  • Korzh-Sleptsova, I. L., E. Lindström, K. H. Mild, A. Berglund, and E. Lundgren. 1995. Low frequency MFs increased inositol 1, 4, 5-trisphosphate levels in the Jurkat cell line. FEBS Lett. 359:151–54. doi:10.1016/0014-5793(95)00031-4.
  • Li, J., Y. Ma, N. Li, Y. Cao, and Y. Zhu. 2014. Natural static magnetic field-induced apoptosis in liver cancer cell. Electromagn Biol Med 33:47–50. doi:10.3109/15368378.2013.783850.
  • Lisi, A., M. Ledda, F. De Carlo, A. Foletti, L. Giuliani, E. D’Emilia, and S. Grimaldi. 2008a. Calcium ion cyclotron resonance (ICR) transfers information to living systems: Effects on human epithelial cell differentiation. Electromagn Biol Med 27:230–40. doi:10.1080/15368370802269135.
  • Lisi, A., M. Ledda, F. De Carlo, D. Pozzi, E. Messina, R. Gaetani, I. Chimenti, L. Barile, A. Giacomello, E. D’Emilia, et al. 2008b. Ion cyclotron resonance as a tool in regenerative medicine. Electromagn Biol Med 27:127–33. doi:10.1080/15368370802072117.
  • Makinistian, L., E. Markova, and I. Belyaev. 2019. A high throughput screening system of coils for ELF magnetic fields experiments: Proof of concept on the proliferation of cancer cell lines. BMC Cancer 19:188. doi:10.1186/s12885-019-5376-z.
  • Nie, Y., L. Du, Y. Mou, Z. Xu, L. Weng, Y. Du, Y. Zhu, Y. Hou, and T. Wang. 2013. Effect of low frequency magnetic fields on melanoma: Tumor inhibition and immune modulation. BMC Cancer 13:582. doi:10.1186/1471-2407-13-582.
  • Ohkubo, T., and J. Yamazaki. 2012. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int. J. Oncol. 41:267–75. doi:10.3892/ijo.2012.1422.
  • Overwijk, W. W., and N. P. Restifo. 2000. B16 as a mouse model for human melanoma. Curr. Protocol. Immunol. 39:20–21. doi:10.1002/0471142735.im2001s39.
  • Pall, M. L. 2013. Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects. J. Cell Mol. Med. 17:958–65. doi:10.1111/jcmm.12088.
  • Panagopoulos, D. J., A. Karabarbounis, and L. H. Margaritis. 2002. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102. doi:10.1016/S0006-291X(02)02393-8.
  • Ross, C. L., M. Siriwardane, G. Almeida-Porada, C. D. Porada, P. Brink, G. J. Christ, and B. Harrison. 2015. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res 15:96–108. doi:10.1016/j.scr.2015.04.009.
  • Simko, M. 2007. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr. Med. Chem. 14:1142–52. doi:10.2174/092986707780362835.
  • Tang, J. Y., T. W. Yeh, Y. T. Huang, W. M H, and L. S. Jang. 2019. Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells. Electromagn Biol Med 38:149–57. doi:10.1080/15368378.2019.1591438.
  • Taylor, J. T., L. Huang, J. E. Pottle, K. Liu, Y. Yang, X. Zeng, B. M. Keyser, K. C. Agrawal, J. B. Hansen, and M. Li. 2008. Selective blockade of T type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 267:116–24. doi:10.1016/j.canlet.2008.03.032.
  • Ushiyama, A., and C. Ohkubo. 2004. Acute effects of low-frequency electromagnetic fields on leukocyte-endothelial interactions in vivo. Vivo 18:125–32.
  • Wang, M. H., M. W. Jian, Y. H. Tai, L. S. Jang, and C. H. Chen. 2020. Inhibition of B16F10 cancer cell growth by exposure to the square wave with 7.83±0.3Hz involves L- and T-type calcium channels. Electromagn Biol Med 28:1–8.
  • Wang, T. T., Y. H. Nie, S. L. Zhao, Y. W. Han, Y. W. Du, and Y. Y. Hou. 2011. Involvement of midline expression in the inhibitory effects of low-frequency magnetic fields on cancer cells. Bioelectromagnetics 32:443–52. doi:10.1002/bem.20654.
  • Weaver, J. C., T. E. Vaughan, and G. T. Martin. 1999. Biological effects due to weak electric and magnetic fields: The temperature variation threshold. Biophysical. J. 76:3026–30. doi:10.1016/S0006-3495(99)77455-2.
  • Wei, J., J. Sun, H. Xu, L. Shi, L. Sun, and J. Zhang. 2015. Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes. Electromagn Biol Med 34:77–84. doi:10.3109/15368378.2014.881744.
  • Wolf, F. I., A. Torsello, B. Tedesco, S. Fasanella, A. Boninsegna, M. D’Ascenzo, C. Grassi, G. B. Azzena, and A. Cittadini. 2005. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanisms. Biochim. Biophys. Acta 1743:120–29. doi:10.1016/j.bbamcr.2004.09.005.
  • Zhadin, M. N. 2001. Review of Russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 22:27–45. doi:10.1002/1521-186X(200101)22:1<27::AID-BEM4>3.0.CO;2-2.
  • Zhou, J., G. Yao, J. Zhang, and Z. Chang. 2002. CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK. Biochem. Biophys. Res. Commun. 296:1013–18. doi:10.1016/S0006-291X(02)02022-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.