250
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Pulsed high magnetic field-induced reversible blood-brain barrier permeability to enhance brain-targeted drug delivery

, , &
Pages 361-374 | Received 31 Jan 2021, Accepted 24 Apr 2021, Published online: 27 May 2021

References

  • Alekseichuk, I., K. Mantell, S. Shirinpour, and A. Opitz. 2019. Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human. Neuroimage 194:136–48. doi:10.1016/j.neuroimage.2019.03.044.
  • Antov, Y., A. Barbul, H. Mantsur, and R. Korenstein. 2005. Electroendocytosis: Exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys. J. 88 (3):2206–23. doi:10.1529/biophysj.104.051268.
  • Bonakdar, M., E. M. Wasson, Y. W. Lee, and R. V. Davalos. 2016. Electroporation of brain endothelial cells on chip toward permeabilizing the blood-brain barrier. Biophys. J. 110 (2):503–13. doi:10.1016/j.bpj.2015.11.3517.
  • Cohen, L. G., B. J. Roth, J. Nilsson, N. Dang, M. Panizza, S. Bandinelli, W. Friauf, and M. Hallett. 1990. Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroenceph. Clin. Neurophysiol. 75 (4):350–57. doi:10.1016/0013-4694(90)90113-X.
  • Fonchy, E., H. Lahrech, A. François‐Joubert, R. Dupeyre, S. Benderbous, C. Corot, R. Farion, C. Rubin, M. Décorps, and C. Rémy. 2001. A new gadolinium‐based contrast agent for magnetic resonance imaging of brain tumors: Kinetic study on a C6 rat glioma model. J. Magn. Reson. Imaging. 14 (2):97–105. doi:10.1002/jmri.1158.
  • Fyllingen, E. H., A. L. Stensjøen, E. M. Berntsen, O. Solheim, and I. Reinertsen. 2016. Glioblastoma segmentation: Comparison of three different software packages. PLoS One 11:10. doi:10.1371/journal.pone.0164891.
  • Goodwin, B. D. 2014. A subject-specific multiscale model of transcranial magnetic stimulation. Marquette University: Dissertations & Theses – Gradworks.
  • Hemalatha, R., T. Thamizhvani, A. J. A. Dhivya, J. E. Joseph, B. Babu, and R. Chandrasekaran. 2018. Active contour based segmentation techniques for medical image analysis. In Medical and Biological Image Analysis, 17. London, UK: IntechOpen.
  • Hynynen, K., N. McDannold, N. Vykhodtseva, and F. Jolesz. 2003. Non-invasive opening of BBB by focused ultrasound. Acta Neurochir. Suppl. 86:555–8.
  • Ilmoniemi, R. J., H. Mäki, J. Saari, R. Salvador, and P. C. Miranda. 2016. The frequency-dependent neuronal length constant in transcranial magnetic stimulation. Front. Cell. Neurosci. 10:194. doi:10.3389/fncel.2016.00194.
  • Klomjai, W., R. Katz, and A. Lackmy-Vallée. 2015. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 58 (4):208–13. doi:10.1016/j.rehab.2015.05.005.
  • Kranjc, S., M. Kranjc, J. Scancar, J. Jelenc, G. Sersa, and D. Miklavcic. 2016. Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 in vivo. Radiol Oncol 50 (1):39–48. doi:10.1515/raon-2016-0014.
  • Ku, S., F. Yan, Y. Wang, Y. Sun, N. Yang, and L. Ye. 2010. The blood–brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochem. Biophys. Res. Commun. 394 (4):871–76. doi:10.1016/j.bbrc.2010.03.006.
  • Lakshmanan, S., G. K. Gupta, P. Avci, R. Chandran, M. Sadasivam, A. E. S. Jorge, and M. R. Hamblin. 2014. Physical energy for drug delivery; poration, concentration and activation. Adv. Drug Deliv. 71:98–114. doi:10.1016/j.addr.2013.05.010.
  • Liburdy, R., T. Tenforde, and R. Magin. 1986. Magnetic field-induced drug permeability in liposome vesicles. Radiat. Res. 108 (1):102–11. doi:10.2307/3576974.
  • Lorenzo, M. F., S. C. Thomas, Y. Kani, J. Hinckley, M. Lee, J. Adler, S. S. Verbridge, F.-C. Hsu, J. L. Robertson, and R. V. Davalos. 2019. Temporal characterization of blood–brain barrier disruption with high-frequency electroporation. Cancers 11 (12):1850. doi:10.3390/cancers11121850.
  • Mahrour, N., R. Pologea-Moraru, M. G. Moisescu, S. Orlowski, P. Levêque, and L. M. Mir. 2005. In vitro increase of the fluid-phase endocytosis induced by pulsed radiofrequency electromagnetic fields: Importance of the electric field component. Biochim. Biophys. Acta. Biomembr. 1668 (1):126–37. doi:10.1016/j.bbamem.2004.11.015.
  • Manaenko, A., H. Chen, J. Kammer, J. H. Zhang, and J. Tang. 2011. Comparison Evans Blue injection routes: Intravenous versus intraperitoneal, for measurement of blood–brain barrier in a mice hemorrhage model. J. Neurosci. Methods 195 (2):206–10. doi:10.1016/j.jneumeth.2010.12.013.
  • Marino, A. A., and R. O. Becker. 1977. Biological effects of extremely low frequency electric and magnetic fields: A review. Physiol. Chem. Phys. 9 (2):131–47.
  • Miklavcic, D., V. Novickij, M. Kranjc, T. Polajzer, S. H. Meglic, T. B. Napotnik, and D. Lisjak. 2020. Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry 132:107440. doi:10.1016/j.bioelechem.2019.107440.
  • Nahas, Z., M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, and M. S. George. 2001. Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol. Psychiatry. 50 (9):712–20. doi:10.1016/S0006-3223(01)01199-4.
  • Novickij, V., J. Dermol, A. Grainys, M. Kranjc, and D. Miklavčič. 2017. Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses. PeerJ 5:e3267. doi:10.7717/peerj.3267.
  • Novickij, V., A. Grainys, I. Kučinskaitė-Kodzė, A. Žvirblienė, and J. Novickij. 2015. Magneto-permeabilization of viable cell membrane using high pulsed magnetic field. IEEE Trans. Magn. 51 (9):1–5. doi:10.1109/TMAG.2015.2439638.
  • Paradisi, S., G. Donelli, M. T. Santini, E. Straface, and W. Malorni. 1993. A 50‐Hz magnetic field induces structural and biophysical changes in membranes. Bioelectromagnetics 14 (3):247–55. doi:10.1002/bem.2250140308.
  • Pell, G., A. Zangen, Y. Roth, A. Friedman, and U. Vazana. 2017. Use of transcranial magnetic stimulation to modulate permeability of the blood-brain barrier. U.S. Patent and Trademark Office.
  • Phillips, J. L., W. D. Winters, and L. Rutledge. 1985. In vitro exposure to electromagnetic fields: Changes in tumour cell properties. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 49 (3):463–69. doi:10.1080/09553008514552681.
  • Richardson, M. P., and F. H. L. Da Silva. 2011. TMS studies of preictal cortical excitability change. Epilepsy. Res. 97 (3):273–77. doi:10.1016/j.eplepsyres.2011.10.018.
  • Sabouni, A., M. Honrath, and M. Khamechi. 2017. Thermal effects in the brain during transcranial magnetic stimulation. IEEE Magn. Lett. 8:1–3. doi:10.1109/LMAG.2017.2759209.
  • Serlin, Y., I. Shelef, B. Knyazer, and A. Friedman (2015). Anatomy and physiology of the blood–brain barrier. Seminars Cell Dev Biol. 38:2-6.
  • Shankayi, Z., S. Firoozabadi, and M. G. Mansurian. 2013. The effect of pulsed magnetic field on the molecular uptake and medium conductivity of leukemia cell. Cell Biochem. Biophys. 65 (2):211–16. doi:10.1007/s12013-012-9422-6.
  • Shankayi, Z., S. M. P. Firoozabadi, M. Mansourian, and A. Mahna. 2014. The effects of pulsed magnetic field exposure on the permeability of leukemia cancer cells. Electromagn. Biol. Med. 33 (2):154–58. doi:10.3109/15368378.2013.800103.
  • Sharabi, S., D. Last, D. Daniels, I. D. Fabian, D. Atrakchi, Y. Bresler, S. Liraz-Zaltsman, I. Cooper, and Y. Mardor. 2021. Non-Invasive Low Pulsed Electrical Fields for Inducing BBB Disruption in Mice—Feasibility Demonstration. Pharmaceutics 13 (2):169. doi:10.3390/pharmaceutics13020169.
  • Sirav, B., and N. Seyhan. 2011. Effects of radiofrequency radiation exposure on blood-brain barrier permeability in male and female rats. Electromagn. Biol. Med. 30 (4):253–60. doi:10.3109/15368378.2011.600167.
  • Towhidi, L., S. Firoozabadi, H. Mozdarani, and D. Miklavcic. 2012. Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses. Radiol Oncol 46 (2):119–25. doi:10.2478/v10019-012-0014-2.
  • Uyama, U., O. N. Okamura, M. Yanase, M. Narita, K. Kawabata, and M. Sugita. 1988. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J. Cereb. Blood Flow Metab. 8 (2):282–84. doi:10.1038/jcbfm.1988.59.
  • Vazana, U., L. Schori, U. Monsonego, E. Swissa, G. S. Pell, Y. Roth, P. Brodt, A. Friedman, and O. Prager. 2020. TMS-Induced Controlled BBB Opening: Preclinical Characterization and Implications for Treatment of Brain Cancer. Pharmaceutics 12 (10):946. doi:10.3390/pharmaceutics12100946.
  • Wang, F., Y. Cheng, J. Mei, Y. Song, Y.-Q. Yang, Y. Liu, and Z. Wang. 2009. Focused ultrasound microbubble destruction‐mediated changes in blood‐brain barrier permeability assessed by contrast‐enhanced magnetic resonance imaging. J. Ultrasound. Med. 28 (11):1501–09. doi:10.7863/jum.2009.28.11.1501.
  • Weissman, J., C. Epstein, and K. Davey. 1992. Magnetic brain stimulation and brain size: Relevance to animal studies. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 85 (3):215–19. doi:10.1016/0168-5597(92)90135-X.
  • Yousefian, B., S. M. Firoozabadi, and M. Mokhtari-Dizaji. 2012. Comparing the Effect of Physical Modalities on Permeabilisation of Cells to Bleomycin in Balb/C Mice. Zahedan. J. Res. Med. Sci. 14 (7):19–23.
  • Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. 2006. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31 (3):1116–28. doi:10.1016/j.neuroimage.2006.01.015.
  • Zhang, X., X. Liu, L. Pan, and I. Lee. 2010. Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochem. Biophys. Res. Commun. 396 (3):662–66. doi:10.1016/j.bbrc.2010.04.154.
  • Zhao, X., T. Shang, X. Zhang, T. Ye, D. Wang, and L. Rei. 2016. Passage of Magnetic tat-conjugated Fe 3 O 4@ SiO 2 nanoparticles across in vitro blood-brain barrier. Nanoscale. Res. Lett. 11 (1):451. doi:10.1186/s11671-016-1676-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.