266
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extremely low frequency electromagnetic fields exposure during the prenatal and postnatal periods alters pro-inflammatory cytokines levels by gender

, , , ORCID Icon, , & show all
Pages 163-173 | Received 24 Sep 2021, Accepted 22 Jan 2022, Published online: 02 Mar 2022

References

  • Ahlbom, A., and M. Feychting. 2003. Electromagnetic radiation. Br. Med. Bull 68:157–65.
  • Babio, N., N. Ibarrola-Jurado, M. Bullo, M. A. Martinez-Gonzalez, J. Warnberg, I. Salaverria, M. Ortega-Calvo, R. Estruch, L. Serra-Majem, M. I. Covas, et al. 2013. White blood cell counts as risk markers of developing metabolic syndrome and its components in the predimed study. PLoS ONE 8:e58354.
  • Boscolo, P., M. Di Gioacchino, L. Di Giampaolo, A. Antonucci, and S. Di Luzio. 2007. Combined effects of electromagnetic fields on immune and nervous responses. Int. J. Immunopathol. Pharmacol. 20:59–63.
  • Comans-Bitter, W. M., R. Groot de, R. Beemd van den, Neijens, H. J., Hop, W.C., Groeneveld, K., Hooijkaas, H., and Dongen van, J. J., et al. 1997. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J. Pediatr. 130 3 :388–93.
  • Comba, P., and L. Farzo. 2009. Health effects of electromagnetic fields generated from power lines:new clues for an old puzzle. Ann. Ist. Super. Sanita 45:233–37.
  • Cosmi, L., L. Maggi, V. Santarlasci, F. Liotta, and F. Annunziato. 2014. T helper cells plasticity in inflammation. Cytometry Part A 85A:36–42.
  • Doyon, P. R., and O. Johansson. 2017. Electromagnetic fields may act cia calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med. Hypotheses 106:71–87.
  • Dundar, B., G. Cesur, S. Comlekci, A. Songur, A. Gokcimen, O. Sahin, O. Ulukut, H. R. Yılmaz, R. Sutcu, and S. Caliskan. 2009. The effect of the prenatal and post-natal long-term exposure to 50 Hz electric field on growth, pubertal development and IGF-1 levels in female Wistar rats. Toxicol Ind Health 25:479.
  • Dupont, M. J., G. Parker, and M. A. Persinger. 2005. Reduced litter sizes following 48h of prenatal exposure to 5nT to 10 nT 0,5 Hz magnetic fields:implications for sudden infant deaths. Int. J. Neurosci. 115:713.
  • Eveson, R. W., C. R. Timmel, B. Brocklehurst, P. J. Hore, and K. A. McLauchlan. 2000. The effects of weak magnetic fields on radical recombination reactions in micelles. Int. J. Radiat. Biol 76:1509–22.
  • Fathi, E., R. Farahzadi, S. Javanmardi, and I. Vietor. 2020b. L-carnitine extends the telomere length of the cardiac differentiated CD117+ - expressing stem cells. Tissue Cell 67:101429.
  • Fathi, E., R. Farahzadi, and B. Valipour. 2021. Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit+ hematopoietic stem cells. Int. J. Biol. Macromol. 177:317–27.
  • Fathi, E., R. Farahzadi, I. Vietor, and S. Javanmardi. 2020a. Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF-β as clinical agents in cardiac regeneration. J. Biosci. 45:92.
  • Feychting, M., A. Ahlbom, and L. Kheifets. 2005. EMF and health. Annu. Rev. Public Health 26:165–89.
  • Gobba, F., A. Bargellini, M. Scaringi, G. Bravo, and P. Borella. 2009. Extremely low frequency-magnetic fields (ELF-EMF) occupational exposure and natural killer activity in peripheral blood lymphocytes. Sci. Total Environ. 407:1218–23.
  • Hajhosseini, L., A. Khaki, E. Merat, and N. Ainehchi. 2013. Effect of rosmarinic acid on sertoli cells apoptosis and serum antioxidant levels in rats after exposure to electromagnetic fields. Afr J Tradit Complement Altern Med 10:477–80.
  • Hannet, I., F. Erkeller-Yuksel, P. Lydyard, V. Denevs, and M. deBruye’re. 1992. Developmental and maturational changes in human blodd lymphocyte subpopulations. Immunol. Today 13:215–18.
  • Hosseinabadi, M. B., N. Khanjani, M. Mirzaii, P. Norouzi, and A. Atashi. 2019. DNA damage from long-term occupational exposure to extremely low frequency electromagnetic fields among power plant workers. Mutat. Res. Gen. Tox En 846:403079.
  • Huss, A., A. Spoerri, M. Egger, and M. Röösli. 2009. Residence near power lines and mortality from neurodegenerative diseases:longitudinal study of the Swiss population. Am. J. Epidemiol. 169:167–75.
  • Huuskonen, H., M. L. Lindbohm, and J. Juutilainen. 1998. Teratogenic and reproductive effects of low frequency magnetic fields. Mutat. Res. 410:167.
  • Ivanova, E. A., and A. N. Orekhov. 2015. T helper lymphocyte subsets and plasticity in otoimmunity and cancer: An overwiew. Biomed. Res. Int. Article ID 327470:9.
  • Jang, Y. W., K. C. Gil, J. S. Lee, W. K. Kang, S.-Y. Park, and W. H. Hwang. 2019. T-cell differentiation to T helper 9 phenotype is elevated by extremely low-frequency electromagnetic fields via induction of IL-2 signaling. Bioelectromagnetics 40:588–601.
  • Jin, W., and C. Dong. 2013. Il-17 cytokines in immunity and inflammation. Emerging Microbes Infect. 2:e60.
  • Juretic’, E., A. Juretic’, B. Urareyic’, and M. Petrovecki. 2001. Alterations in lymphocyte phenotype of infected preterm newborns. Biol. Neonate 80:223–27.
  • Juretic’, E., B. Urareyic’, M. Petrovecki, and A. Juretic’. 2000. Two color flow cytometric analysis of preterm and term newborn lymphocytes. Immunobiology 202:421–28.
  • Karabakhtsian, R., N. Broude, N. Shalts, S. Kochlatyi, R. Goodman, and A. S. Henderson. 1994. Calcium is necessary in the cell response to EM fields. FEES Lett. 349:1–6.
  • Karpowicz, J., P. Zradzin Ski, and K. Gryz. 2011. Measures of occupational exposure to time varying low-frequency magnetic fields of non-uniform spatial distribution in the light of international guidelines and electro-dynamic exposure effects in the human body. Med Pr 63:317–28.
  • Kaszuba-Zwoinska, J., J. Gremba, B. Galdzinska-Calik, K. Wojcik-Piotrowicz, and P. J. Thor. 2015. Electromagnetic field induced biological effects in humans. Prz. Lek. 72:636–41.
  • Khaki, A. A., A. Khaki, and S. S. Ahmadi. 2016. The effect of non-ionizing electromagnetic field with a frequency of 50 Hz in rat ovary: A transmission electron microscopy study. Int. J. Reprod. BioMed. 14-2:125–32.
  • Khaki, A. A., R. S. Tubbs, M. M. Shoja, J. S. Rad, A. Khaki, R. M. Farahani, Zarrintan, S., and Nag, T. C., et al. 2006. The effects of an electromagnetic field on the boundary tissue of the seminiferous tubules of the rat: A light and transmission electron microscope study. Folia Morphol (Warsz) 65 3 :188–94.
  • Khaki, A. A., S. Zarrintan, A. Khaki, and A. Zahedi. 2008. The effects of electromagnetic field on the microstructure of seminal vesicles in rat: A light and transmission electron microscope study. Pak. J. Biol. Sci. 11:692–701.
  • Kim, S. J., Y. W. Jang, K. E. Hyung, D. K. Lee, K. H. Hyun, S. H. Jeong, K. H. Min, W. Kang, J. H. Jeong, S. Y. Park, et al. 2017. Extremely low-frequency electromagnetic field exposure enhances inflammatory response and inhibits effect of antioxidant in RAW 264.7 cells. Bioelectromagnetics 38:374–85.
  • Kim, Y. W., H. S. Kim, J. S. Lee, Y. J. Kim, S. K. Lee, J. N. Seo, K. C. Jung, N. Kim, and Y. M. Gimm. 2009. Effects of 60 Hz 14 mT magnetic field on the apoptosis of testicular germ cell in mice. Bioelectromagnetics 30:66.
  • Kirschvink, J. L. 1992. Uniform magnetic fields and double wrapped coil systems: Improved Techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13:401–11.
  • Kowalczuk, C. I., L. Robbins, J. M. Thomas, B. K. Butland, and R. D. Saunders. 1994. Effects of prenatal exposure to 50 Hz magnetic field on development in mice. Bioelectromagnetics 15:349.
  • Lacy-Hubert, A., J. C. Metcalfe, and R. Hesketh. 1998. Biological responses to electromagnetic fields. FASEB J. 12:395–420.
  • Lai, J., Y. Zhang, J. Zhang, X. Liu, G. Ruan, S. Chaugai, J. Tang, H. Wang, C. Chen, and D. W. Wang. 2016. Effects of 100μT extremely low frequency electromagnetic fields exposure on hematograms and blood chemistry in rats. J. Radiat. Res. 57:16–24.
  • Ledran, M. H., A. Krassowka, L. Armstrong, Dimmick, I., Renström, J., Lang, R., Yung, S., Santibanez-Coref, M., Dzierzak, E., Stojkovic, M., Oostendorp, R. A. J., Forrester, L., and Lako, M., et al. 2008. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3:85–98.
  • Leung, V., J. Gillis, J. Raboud, C. Cooper, R. S. Hogg, M. R. Loutfy, N. Machouf, J. S. Montaner, S. B. Rourke, C. Tsoukas, et al. 2013. Predictors of CD4:CD8 ratio normalization and its effect on health outcomes in the era of combination anti retro viral therapy. PLOS One 8:e77665.
  • Lukac, T., A. Matavulj, M. Matavulj, V. Rajkovic, and B. Lazetic. 2006. Photoperiodism as a modifier of effect of extremely low frequency electromagnetic field on morphological properties of pineal gland. Bosn. J. Basic Med. Sci. 6:10.
  • Luo, X., S. J. Jia, R. Y. Li, P. Gao, and Y. W. Zhang. 2016. Occupational exposure to 50 Hz magnetic fileds does not alter responses of inflammatory genes and activation of splenic lymphocytes in mice. Int. J. Occup. Med. Environ. Health 29:277–91.
  • Maes, A., and L. Verschaeve. 2016. Genetic damage in humans exposed to extremely low-frequency electromagnetic fields. Arch. Toxicol. 90:2337–48.
  • Mattsson, M. O., and M. Simko ́. 2014. Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in in vitro studies. Front. Public Heal 2:1–11.
  • Merrit, R., C. Purcell, and G. Stroink. 1983. Uniform magnetic field produced by three, four, and five square coils. Rev. Sci. Instrum 54:879–82.
  • Odacı, E., O. Bas, and S. Kaplan. 2008. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: A stereological and histopatological study. Brain Res. 1238:224.
  • Overgaard, N. H., J. W. Jung, R. J. Steptoe, and J. W. Wells. 2015. CD4+/CD8+ double positive T cells:more than just a developmental stage. Leukoc Biol. 97:31–38.
  • Parent, A., H. Russ, I. Khan, LaFlam, T. N., Metzger, T. C., Anderson, M. S., and Hebrok, M., et al. 2013. Generation of functional Thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13:219–29.
  • Quaglino, D., M. Capri, and I. P. Ronchetti. 2000. Modulation of cell death in rat thymus light and electron microscopic investigations. Ann. N. Y. Acad. Sci. 926:79–82.
  • Ren, Y., J. Chen, M. Miao, D. Li, H. Liang, Z. Wang, F. Yang, X. Sun, and W. Yuan. 2019. Prenatal exposure to extremely low frequency magnetic field and its impact on fetal growth. Environ. Health 18:6.
  • Rollwitz, J., M. Lupke, and M. Simko. 2004. Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim. Biophys. Acta 1674:231–38.
  • Rosado, M. M., M. Somko, M. O. Mattsson, and C. Pioli. 2018. Immune-modulating perspectives for low frequency electromagnetic fields in innate immunity. Front. Public Health 6:85.
  • Rossant, J., and P. P. L. Tam. 2017. New insights into early human development:lessons for stem cell derivation and differentiation. Cell Stem Cell 20:18–28.
  • Ryan, B. M., E. Mallett Jr, T. R. Johnson, J. R. Gauger, and D. L. McCormick. 1996. Developmental toxicity study of 60 Hz (power frequency) magnetic fields in rat. Teratology 54:73.
  • Salehi, I., K. Ghazikhanlou Sani, and A. Zamani. 2013. Exposure of rats to extremely low-frequency electromagnetic fields (ELF-EMF) alters cytokines production. Electromagn Biol Med 32:1–8.
  • Silkstone, G., and M. T. Wilson. 2016. A further investigation of the effects of extremely low frequency magnetic fields on alka-line phosphatase and acetylcholinesterase. PLoS One 11:e0148369.
  • Simko, M., S. Droste, R. Kriehuber, and D. G. Weiss. 2001. Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Fur.J. Cell Biol. 80:562–66.
  • Steidley, K. E., S. H. Thompson, M. J. McQuade, S. L. Strong, M. J. Scheidt, and T. E. Van Dyke. 1992. A comparison of T4:T8 lymphocyte ratio in the periodontal lesion of healthy and HIV-positive patients. J. Periodontol. 63:753–56.
  • Tang, R., Y. Xu, F. Ma, J. Ren, S. Shen, Y. Du, Y. Hou, and T. Wang. 2016. Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT. Bioelectromagnetics 37:89–98.
  • Touiton, Y., Y. Dieridane, J. Lambrozo, and F. Camus. 2012. Long-term (up to 20 years) effects of 50 Hz magnetic field exposure on blood chemistry parameters in healthy men. Clin. Biochem. 45:425–28.
  • Trebak, M., and J. P. Kinet. 2019. Calcium signaling in T cells. Nat. Rev. Immunol. 19:154–69.
  • Valberg, P. A., R. Kavet, and C. N. Rafferty. 1997. Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res. 148:2–21.
  • Varani, K., F. Vincenzi, A. Ravani, S. Pasquini, S. Merighi, S. Gessi, S. Setti, M. Cadossi, P. A. Borea, and R. Cadossi. 2017. Adenosine receptors as a biological pathway far the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields. Mediators Inflamm. 2017 1–11 .
  • Walleczeck, J. 1992. Electromagnetic field effect on cells of the immune system: The role of calcium signaling. FASEB J. 6:3177–85.
  • Wertheimer, N., D. A. Savitz, and E. Leeper. 1995. Childhood cancer in relation to indicators of magnetic fields from ground currunt sources. Bioelectromagnetics 16:86–96.
  • Wyszkowska, J., T. Jedrzejewski, J. Piotrowski, A. Wojciechowska, M. Stankiewicz, and W. Kozak. 2018. Evaluation of the influence of in vivo exposure to extremely low-frequency magnetic fields on plasma levels of pro-inflammatory cytokines in rats. Int. J. Radiat. Biol. 94:909–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.