309
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Magnetic fields and apoptosis: a possible mechanism

ORCID Icon
Pages 293-303 | Received 20 Dec 2021, Accepted 24 Apr 2022, Published online: 11 May 2022

References

  • Adams, B., I. Sinayskiy, and F. Petruccione. 2018. An open quantum approach to the radical pair mechanism. Sci. Rep. 8 (1):15719. doi:10.1038/s41598-018-34007-4.
  • Aggarwal, V., H. S. Tuli, A. Varol, F. Thakral, M. B. Yerer, K. Sak, M. Varol, A. Jain, M. A. Kan, and S. Sethi. 2019. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 9:735. doi:10.3390/biom9110735.
  • Arntzen, M. O., and B. Thiede. 2012. ApoptoProteomics, an integrated database for analysis of proteomics data obtained apoptotic cells. Molecular & Cellular Proteomics 11:1–15. doi:10.1074/mcp.m111.010447.
  • Barnes, F. S., and B. Greenebaum. 2015. The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54. doi:10.1002/bem.21883.
  • Brocklehurst, B. 2002. Magnetic fields and radical reactions: Recent developments and their role in nature. Chem. Soc. Rev. 31 (5):301–11. doi:10.1039/b107250c.
  • Buchachenko, A. 2016. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics 37:1–13. doi:10.1002/bem.21947.
  • Buchachenko, A. L., A. A. Bukhvostov, K. V. Ermakov, and D. A. Kuznetsov. 2020. A specific role of magnetic isotopes in biological and ecological systems. Physics and Biophysics Beyond. Prog. Biophys. Mol. Biol. 155:1–19. doi:10.1016/j.pbiomolbio.2020.02.007.
  • Chan, A. B., G. C. Parico, J. L. Fribourgh, L. H. Ibrahim, M. J. Bollong, C. L. Partch, and K. A. Lamia. 2021. CRY2 missense mutations suppress P53 and enhance cell growth. PNAS 118:e2101416118. doi:10.1073/pnas.2101416118.
  • Chen, W. F., H. Qi, R. G. Sun, Y. Liu, K. Zhang, D Anj. Q. Liu, and J.-Q. Liu. 2010. Static magnetic fields enhanced the potency of cisplatin on k562 cells. 2010. Cancer Biother. Radiopharm. 25:401–08. doi:10.1089/cbr.2009.0743.
  • Cios, A., M. Ciepielak, W. Tankewicz, and L. Szymanski. 2021. The influence of the extremely low frequency electromagnetic fields on clear cell renal carcinoma. Int. J. Mol. Sci 22:1342. doi:10.3390/ijms22031342.
  • Cordani, M., G. Butera, R. Pacchiana, F. Masetto, N. Mullappilly, C. Riganti, and M. Donadelli. 2020. Mutant p53-associated molecular mechanisms of ROS regulation in cancer cells. Biomolecules 10 (3):361. doi:10.3390/biom10030361.
  • Crocetti, S., C. Beyer, G. Schade, M. Egli, J. Frohlich, A. Franco-Obregon, and I. Ulasov. 2013. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cells viability. PLoS one 8:e72944. doi:10.1371/journal.pone.0072944.
  • Dashzeveg, N., and K. Yoshida. 2015. Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett. 367:108–12. doi:10.1016/j.canlet.2015.07.019.
  • Diebold, L., and N. S. Chandel. 2016. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med. 100:86–93. doi:10.1016/j.freeradbiomed.2016.04.198.
  • Falkowski, P. G., and L. V. Godfrey. 2008. Electrons, life and the evolution of Earth’s oxygen cycle. Phil. Trans. R. Soc. B 363:2705–16. doi:10.1098/rstb.2008.0054.
  • Fisher, M. 2017. Census and evaluation of p53 target genes. Oncogene 36 (28):3943–56. doi:10.1038/onc.2016.502.
  • Grissom, C. B. 1995. Magnetic field effects in biology: A survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev. 95 (1):3–24. doi:10.1021/cr00033a001.
  • Gwangwa, M. V., A. M. Joubert, and M. H. Visagie. 2018. Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis .Cell. Mol. Biol. Lett. 23:20. doi:10.1186/s11658-018-0088-y.
  • Hore, P. J. 2019. Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. Elife 8:ii: e44179. doi:10.7554/elife.44179.
  • Hore, P. J., and H. Mouritsen. 2016. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45:299–344. doi:10.1146/annurev-biophys-032116-094545.
  • Ikeya, N., and J. R. Woodward. 2021. Cellular autofluorescence is magnetic field sensitive. PNAS 118:1–6. doi:10.1073/pnas.2018043118.
  • Ischenko, A. A., P. M. Weber, and R. J. D. Miller. 2017. Capturing chemistry in action with electrons: Realization of atomically resolved reaction dynamics. Chem. Rev. 117:11066–124. doi:10.1021/acs.chemrev.6b00770.
  • Jalali, A., J. Zafari, F. J. Jouni, P. Abdolmaleki, F. H. Shirazi, and M. J. Khodayar. 2019. Combination of static magnetic field and cisplatin in order to reduce drug resistance in cancer cell lines. Int. J. Radiat. Biol. 95 (8):1194–201. doi:10.1080/09553002.2019.1589012.
  • Juutilainen, J., M. Herrala, J. Luukkonen, J. Naarala, and P. J. Hore. 2018. Magnetocarcinogenesis: Is there a mechanism for carcinogenic effects of weak magnetic fields? Proc. R. Soc. B 285:20180590. doi:10.1098/rspb.2018.0590.
  • Kamalipooya, S., P. Abdolmaleki, Z. Salemi, F. J. Jouni, J. Zafari, and H. Soleimani. 2017. Simultaneous application of cisplatin and static magnetic field enhances oxidative stress in HeLa cell line. In Vitro Cellular & Developmental Biology - Animal 53:783–90. doi:10.1007/s11626-017-0148-z.
  • Kim, J., C. S. Ha, H. J. Lee, and K. Song. 2016. Repetitive exposure to 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells. Biochem. Biophys. Res. Commun. 400:739–44. doi:10.1016/j.bbrc.2010.08.140.
  • Koh, E. K., B. K. Ryu, G. Y. Jeong, I. S. Bang, M. H. Nam, and K. S. Chae. 2008. A 60 Hz sinusoidal magnetic field induce apoptosis of prostate cancer cells through reactive oxygen species. Int. J. Radiat. Biol. 84:945–55. doi:10.1080/09553000802460206.
  • Kutta, R. J., N. Archipowa, L. O. Johannissen, A. R. Jones, Scrutton, and N. S. Scrutton. 2017. Vertebrate cryptochromes are vestigial flavoproteins. Sci Rep. 7:44906. doi:10.1038/srep44906.
  • Lai, H. 2019. Exposure to static and extremely-low frequency electromagnetic fields and cellular free radicals. Electromagn. Biol. Med. 38:231–48. doi:10.1080/15368378.2019.1656645.
  • Lai, H., and N. P. Singh. 1997a. Acute exposure to a 60-Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics 18 (2):156–165. doi:10.1002/1521-186X
  • Lai, H., and N. P. Singh. 1997b. Melatonin and N-tert-butyl-phenylnitrone blocked 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J. Pineal Res. 22:152–62. doi:10.1111/j.1600-079x.1997.tb00317.x.
  • Lai, H., and N. P. Singh. 2004. Magnetic field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect 112:687–94. doi:10.1289/ehp.6355.
  • Lancet, T., and Lancet. 2018. GLOBOCAN 2018: Counting the toll of cancer. Lancet 392:985. doi:10.1016/s0140-6736(18)32252-9.
  • Landler, L., and D. A. Keays. 2018. Cryptochrome: The mag- netosensor with a sinister side? PLoS Biol. 16:e3000018. doi:10.1371/journal.pbio.3000018.
  • Lee, J. H., S. Gaddameedhi, Ozturk, R. N, Sancar, N. Ozturk, A. Ye, A. Sancar, and A. Sancar. 2013. DNA damage-specific control of cell death by cryptochrome in p53 mutant Ras-transformed cells. Cancer Res 15 73:785–91. doi:10.1158/0008-5472.can-12-1994.
  • Liao, Z., D. Chua, and N. S. Tan. 2019. Reactive oxygen species: A volatile driver of field cancerization and metastasis. Mol. Cancer 18:65. doi:10.1186/s12943-019-0961-y.
  • Liu, B., Y. Chen, and D. K. St Clair. 2008. ROS and p53: Versatile partnership. Free Radic. Biol. Med. 44:1529–35. doi:10.1016/j.freeradbiomed.2008.01.011.
  • Maillet,A., and S. Pervaiz. 2012. Redox regulation of p53 redox effectors regulated by p53: a subtle balance. Antioxid. Redox Signaling. 16, 128: 5–94 . doi:10.1089/ars.2011.4434
  • Matsson, M. O., and M. Simkò. 2014. Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in in vitro studies. Frontiers in Public Health 2:132. doi:10.3389/fpubh.2014.00132.
  • Miller, R. J. D. 2014. Femtosecond crystallography with ultrabright electrons and X-rays: Capturing chemistry in action. Science 343:1108–16. doi:10.1126/science.1248488.
  • Moldogazieva, N. T., S. V. Lutsenko, and A. Terentiev. 2018. Reactive oxygen and nitrogen species–induced protein modifications: Implication in carcinogenesis and anticancer therapy. Cancer.Res. 78 (21):6040–47. doi:10.1158/0008-5472.can-18-0980.
  • Moloney, J. N., and T. G. Cotter. 2018. ROS signalling in the biology of cancer. Semin Cell ?Dev Biol 80:50–64. doi:10.1016/j.semcdb.2017.05.023.
  • Okano, H. 2008. Effects of static magnetic fields in biology: Role of free radicals. Frontiers in Biosci. 13:6106–25. doi:10.2741/3141.
  • Ozturk, N., J. H. Lee, S. Gaddameedhi, and A. Sancar. 2009. Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proceedings of the National Academy of Sciences 106 (8):2841–46. doi:10.1073/pnas.0813028106.
  • Perillo, B., M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli, G. Galasso, G. Castoria, and A. Migliaccio. 2020. ROS in cancer therapy: The bright side of the moon. Exp. & Molec. Med. 52:192–203. doi:10.1038/s12276-020-0384-2.
  • Polk, C. 1992. Dosimetry of extremely-low-frequency magnetic fields. Bioelectromagnetics. Suppl 13:209–35. doi:10.1002/bem.2250130720.
  • Polyak, K., Y. Xia, J. L. Zweier, K. W. Kinzler, and B. Vogelstein. 1997. A model for p53-induced apoptosis. Nature 389:300–05. doi:10.1038/38525.
  • Prasad, S., S. C. Gupta, and A. K. Tyagi. 2017. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters 387:95–105. doi:10.1016/j.canlet.2016.03.042.
  • Provenzano, A. E., S. Amatori, M. G. Nasoni, G. Persico, S. Russo, A. R. Mastrogiacomo, A. Gambarara, and M. Fanelli. 2018. Effects of fifty-Hertz electromagnetic fields on granulocytic differentiation of ATRA-treated acute promyelocytic leukemia NB4 cells. Cell. Physiol. Biochem. 46:389–400. doi:10.1159/000488473.
  • Redza-Dutordoir, M., and D. A. Averill-Bates. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863:2977–92. doi:10.1016/j.bbamcr.2016.09.012.
  • Ronchetto, F., D. Barone, M. Cintorino, M. Berardelli, S. Lissolo, R. Orlassino, P. Ossola, and S. Tofani. 2004. Extremely low frequency- modulated static magnetic fields to treat cancer: A pilot study on patients with advanced neoplasm to assess safety and acute toxicity. Bioelectromagnetics 25 (8):563–71. doi:10.1002/bem.20029.
  • Sadikovic, B., K. Al-Romaih, J. A. Squire, and M. Zielenska. 2008. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr. Genomics 9:394–408. doi:10.2174/138920208785699580.
  • Saliev, T., D. Begimbetova, A. R. Masoud, and B. Matkarimov. 2019. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog. Biophys. Mol. Biol. 141:e36. doi:10.1016/j.pbiomolbio.2018.07.009.
  • Schuermann, D., and M. Mevissen. 2021. Manmade electromagnetic fields and oxidative stress-biological effects and consequences for health. Int. J. Mol. Sci 22:3772. doi:10.3390/ijms22073772.
  • Sheppard, D. M. W., J. Li, K. B. Henbest, S. R. T. Neil, K. Maeda, J. Storey, E. Schleicher, T. Biskup, R. Rodriguez, S. Weber, et al. 2017. Millitesla magnetic field effects on the photocycle of an animal cryptochrome. Sci. Rep 7:42228. doi:10.1038/srep42228.
  • Sherrard, R. M., N. Morellini, N. Jourdan, M. El-Esawi, L. D. Arthaut, C. Niessner, F. Rouyer, A. Klarsfeld, M. Doulazmi, J. Witczak, et al. 2018. Low-intensity elec- tromagnetic fields induce human cryptochrome to modu- late intracellular reactive oxygen species. PLoS Biol. 16:e2006229. doi:10.1371/journal.pbio.2006229.
  • Tofani, S. 2015. Electromagnetic energy as a bridge between atomic and cellular levels in the genetic approach to cancer treatment. Curr. Top. In Med. Chem 15 (6):572–78. doi:10.2174/1568026615666150225104217.
  • Tofani, S. 2018. Role of an atomic-level-based approach for improving cancer therapy. In Cancer management and therapy, A. Hamza and N. S. N, ed. Chap. 1, 3–27. London, England: IntechOpen. doi:10.5772/intechopen.72324.
  • Tofani, S., D. Barone, M. Berardelli, E. Berno, M. Cintorino, L. Foglia, P. Ossola, F. Ronchetto, E. Toso, and M. Eandi. (2003). Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis- platin against Lewis lung carcinoma, but not of Cyclophosphamide against B 16 melanotic melanoma. Pharmacol Re 48:83–90. PMID: 12770519.
  • Tofani, S., D. Barone, M. Cintorino, M. M. de Santis, A. Ferrara, R. Orlassino, P. Ossola, F. Peroglio, K. Rolfo, and F. Ronchetto. 2001. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics 22 (6):419–28. doi:10.1002/bem.69.
  • Tofani, S., D. Barone, S. Peano, P. Ossola, F. Ronchetto, and M. Cintorino. 2002b. Anticancer activity by magnetic fields: Inhibition of metastatic spread and growth in a breast cancer model. IEEE Plasma Sci. 30:1552–57. doi:10.1109/TPS.2002.804209.
  • Tofani, S., M. Cintorino, D. Barone, M. Berardelli, M. M. de Santis, A. Ferrara, R. Orlassino, P. Ossola, K. Rolfo, F. Ronchetto, et al. 2002a. Increased mouse survival, tumor growth inhibition and decreased immunoreactive p53 after exposure to magnetic fields. Bioelectromagnetics 23 (3):230–38. doi:10.1002/bem.10010.
  • Wang, M., K. W. Chen, D. X. Ni, H. J. Fang, L. S. Jang, and C. H. Chen. 2021. Effect of extremely low frequency electromagnetic fields parameters on the proliferation of human breast cancer. Electromagn. Biol. Med. 40 (3):384–92. doi:10.1080/15368378.2021.1891093.
  • Wang, H., and X. Zhang. 2017. Magnetic fields and reactive oxygen species. Int. J. Mol. Sci 18:2175. doi:10.3390/ijms18102175.
  • Xu, A., Q. Wang, and T. Lin. 2020. Low-frequency magnetic fields (LF-MFs) inhibit proliferation by triggering apoptosis and altering cell cycle distribution in breast cancer cells. Int. J. Mol. Sci 21. doi:10.3390/ijms21082952.
  • Xu, A., Q. Wang, X. Lv, and T. Lin. 2021. Progressive study on the non-thermal effects of magnetic fields therapy in oncology. Front Oncol. 11:638146. doi:10.3389/fonc.2021.638146.
  • Yang, H., R. M. Villani, H. Wang, M. J. Simpson, M. S. Roberts, M. Tang, and X. Liang. 2018. The role of reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37:266. doi:10.1186/s13046-018-0909-x.
  • Yoshida, K., and Y. Miki. 2010. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci. 101:831–35. doi:10.1111/j.1349-7006.2010.01488.x.
  • Yuan, Y., S. Ni, A. Zhuge, B. Li, and L. Li. 2021. Iron Regulates the Warburg Effect and Ferroptosis in Colorectal Cancer. Front. Oncol 11:614778. doi:10.3389/fonc.2021.614778.
  • Yuan, L. Q., C. Wang, D. F. Lu, X. D. Zhao, L. H. Tan, and X. Chen. 2020. Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging. 12:3662–81. doi:10.18632/aging.102836.
  • Yuan, L. Q., C. Wang, K. Zhu, H. M. Li, W. Z. Gu, D. M. Zhou, J. Q. Lai, D. Zhou, Y. Lv, S. Tofani, et al. 2018. The antitumor effect of static and extremely low frequency magnetic fields against nephroblastoma and neuroblastoma. Bioelectromagnetics 39:375–85. doi:10.1002/bem.22124.
  • Zhang, Y., G. P. Berman, and S. Kais. 2015. The radical pair mechanism and the avian chemical compass: Quantum coherence and entanglement. Int. J. Quantum Chem. 115:1327–41. doi:10.1002/qua.24943.
  • Zhaoyue, H., and S. Hans-Uwe. 2013. A novel link between p53 and ROS. Cell Cycle 12 (2):201–06. doi:10.4161/cc.23418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.