238
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effects of pre and postnatal 2450 MHz continuous wave (CW) radiofrequency radiation on thymus: Four generation exposure

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 315-324 | Received 07 Feb 2022, Accepted 08 May 2022, Published online: 30 May 2022

References

  • Chen, S. L., L. Cai, Q. Y. Meng, S. Xu, H. Wan, and S. Z. Liu. 2000. Low-dose whole-body irradiation (LD-WBI) changes protein expression of mouse thymocytes: Effect of a LD-WBI enhanced protein RIP10 on cell proliferation and spontaneous or radiation induced thymocyte apoptosis. Toxicol. Sci 55:97–106. doi:10.1093/toxsci/55.1.97.
  • Dasdag, S., M. A. Ketani, Z. Akdag, A. R. Ersay, I. Sari, O. C. Demirtas, and M. S. Celik. 1999. Whole - body microwave exposure emitted by cellular phones and testicular function of rats. Urol. Res 27:219–23. doi:10.1007/s002400050113.
  • Dasdag, S., M. Z. Akdag, O. Ayyildiz, O. C. Demirtas, M. Yayla, and C. Sert. 2000. Do cellular phones alter blood parameters and birth weight of rats. Electro. Magnetobiol 19:107–13. doi:10.1081/JBC-100100301.
  • Dasdag, S., M. Z. Akdag, E. Ulukaya, A. K. Uzunlar, and A. R. Ocak. 2009. Effects of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn. Biol. Med 28:342–54. doi:10.3109/15368370903206556.
  • Dasdag, S., M. Z. Akdag, M. E. Erdal, N. Erdal, O. I. Ay, M. E. Ay, S. G. Yilmaz, B. Tasdelen, and K. Yegin. 2015a. Long term and excessive use of 900 MHz radiofrequency radiation alter microRNA expression in brain. Int. J. Radiat. Biol 91:306–11. doi:10.3109/09553002.2015.997896.
  • Dasdag, S., M. Z. Akdag, M. E. Erdal, N. Erdal, O. I. Ay, M. E. Ay, S. G. Yilmaz, B. Tasdelen, and K. Yegin. 2015b. Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int. J. Radiat. Biol 91:555–61. doi:10.3109/09553002.2015.1028599.
  • Dominguez-Gerpe, L., and M. Rey-Menéndez. 2003. Evolution of the thymus size in response to physiological and random events throughout life. Microsc. Res. Tech 62:464–76. doi:10.1002/jemt.10408.
  • Gui, J., L. M. Mustachio, D. Su, and R. W. Craig. 2012. Thymus size and age-related thymic involution: Early Programming, sexual dimorphism, progenitors and stroma. Aging Dis 3:280–90.
  • Hancı, H., S. Türedi, Z. Topal, T. Mercantepe, İ. Bozkurt, H. Kaya, Ş. Ersöz, B. Ünal, and E. Odacı. 2015. Can prenatal exposure to a 900 MHz electromagnetic field affect the morphology of the spleen and thymus, and alter biomarkers of oxidative damage in 21-day-old male rats? Biotech. Histochem 90:535–43. doi:10.3109/10520295.2015.1042051.
  • Hashish, A. H., M. A. El-Missiry, H. I. Abdelkader, and R. H. Abou-Saleh. 2008. Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol. Environ. Saf. 71 :895–902.
  • Hekmat, A., A. A. Saboury, and A. Moosavi-Movahedi. 2013. The toxic effects of mobile phone radiofrequency (940 MHz) on the structure of calf thymus DNA. Ecotoxicol. Environ. Saf 88:35–41. doi:10.1016/j.ecoenv.2012.10.016.
  • Khan, M. A., and F. Anjum. 2020. Thymic Hyperplasia. NCBI Bookshelf. , Treasure Island (FL): StatPearls Publishing.
  • Kulaber, A., G. Kerimoglu, Ş. Ersöz, S. Çolakoglu, and E. Odacı. 2017. Alterations of thymic morphology and antioxidant biomarkers in 60-day-old male rats following exposure to a continuous 900 MHz electromagnetic field during adolescence. Biotech. Histochem 92 (5):331–37. doi:10.1080/10520295.2017.1312525.
  • Laudisi, F., M. Sambucci, F. Nasta, R. Pinto, R. Lodato, P. Altavista, G. A. Lovisolo, C. Marino, and C. Pioli. 2012. Prenatal exposure to radiofrequencies: Effects of WiFi signals on thymocyte development and peripheral T cell compartment in an animal model. Bioelectromagnetics 33 (8):652–61. doi:10.1002/bem.21733.
  • Lee, H. J., Y. B. Jin, J. S. Lee, S. Y. Choi, T. H. Kim, J. K. Pack, H. D. Choi, N. Kim, and Y. S. Lee. 2011. Lymphoma development of simultaneously combined exposure to two radiofrequency signals in AKR/J mice. Bioelectromagnetics 32 (6):485–92. doi:10.1002/bem.20655.
  • Miller, J. F. A. P. 2020. The function of the thymus and its impact on modern medicine. Science 369:eaba2429. doi:10.1126/science.aba2429.
  • Misa-Agustiño, M. J., J. M. Leiro-Vidal, J. L. Gomez-Amoza, M. T. Jorge-Mora, F. J. Jorge-Barreiro, A. A. Salas-Sánchez, F. J. Ares-Pena, and E. López-Martín. 2015. EMF radiation at 2450 MHz triggers changes in the morphology and expression of heat shock proteins and glucocorticoid receptors in rat thymus. Life Sci. 127:1–11. doi:10.1016/j.lfs.2015.01.027.
  • Nishino, M., S. K. Ashiku, O. N. Kocher, R. L. Thurer, P. M. Boiselle, and H. Hatabu. 2006. The thymus: A comprehensive review. Radiographics 26:335–48. doi:10.1148/rg.262045213.
  • Ohtani, S., A. Ushiyama, M. Maeda, Y. Ogasawara, J. Wang, N. Kunugita, and K. Ishii. 2015. The effects of radio-frequency electromagnetic fields on T cell function during development. J. Radiat. Res 56:467–74. doi:10.1093/jrr/rru126.
  • Quaglino, D., M. Capri, L. Zecca, C. Franceschi, and I. P. Ronchetti. 2004. The effect on rat thymocytes of the simultaneous in vivo exposure to 50-Hz electric and magnetic field and to continuous light, biological effects of electromagnetic radiation. Sci. World J 4S (2):91–99. doi:10.1100/tsw.2004.183.
  • Rezzani, R., L. Nardo, G. Favero, M. Peroni, and L. F. Rodella. 2014. Thymus and aging: Morphological, radiological, and functional overview. Age 36 (1):313–51. doi:10.1007/s11357-013-9564-5.
  • Sambucci, M., F. Laudisi, F. Nasta, R. Pinto, R. Lodato, V. Lopresto, P. Altavista, C. Marino, and C. Pioli. 2011. Early life exposure to 2.45 GHz Wifi-like signals: Effects on development and maturation of the immune system. Prog. Biophys. Mol. Biol 107:393–98. doi:10.1016/j.pbiomolbio.2011.08.012.
  • Sommer, A. M., J. Streckert, A. K. Bitz, V. W. Hansen, and A. Lerchl. 2004. No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice. BMC Cancer 4:77. doi:10.1186/1471-2407-4-77.
  • Sommer, A. M., A. K. Bitz, J. Streckert, V. W. Hansen, and A. Lerchla. 2007. Lymphoma development in mice chronically exposed to UMTS-modulated radiofrequency electromagnetic fields. Radiat. Res 168:72–80. doi:10.1667/RR0857.1.
  • Watson, R. 2011. Radiation fears prompt possible restrictions on Wi-Fi and mobile phone use in schools. BMJ 342 (jun01 5):d3428. doi:10.1136/bmj.d3428.
  • Wu, T., P. A. Plett, H. L. Chua, M. Jacobsen, G. E. Sandusky, T. J. MacVittie, and C. M. Orschell. 2020. Immune reconstitution and thymic involution in the acute and delayed hematopoietic radiation syndromes. Health Phys. 119 (5):647–58. doi:10.1097/HP.0000000000001352.
  • Zhang, H. H., Y. X. Cheng, X. P. Luo, Y. Q. He, C. Z. Li, W. J. Qu, and Y. Q. Duan. 2016. Preventive effects of lotus seed pod procyanidins on extremely low frequency electromagnetic exposure-induced immune function injury. Mod. Food Sci. Technol 32:1–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.