349
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of oxidative damage, antioxidant balance, DNA repair genes, and apoptosis due to radiofrequency-induced adaptive response in mice

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 389-401 | Received 09 Feb 2022, Accepted 31 Jul 2022, Published online: 05 Sep 2022

References

  • Akdag, M. Z., S. Dasdag, F. Canturk, D. Karabulut, Y. Caner, and N. Adalier. 2016. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J. Chem. Neuroanat. 75:116–22. doi:10.1016/j.jchemneu.2016.01.003.
  • Alkis, M. E., M. Z. Akdag, and S. Dasdag. 2021. Effects of low-intensity microwave radiation on oxidant-antioxidant parameters and DNA damage in the liver of rats. Bioelectromagnetics 42:76–85. doi:10.1002/bem.22315.
  • Alkis, M. E., H. M. Bilgin, V. Akpolat, S. Dasdag, K. Yegin, M. C. Yavas, M. Z. Akdag, et al. 2019. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 38:32–47. doi:10.1080/15368378.2019.1567526.
  • Aubrey, B. J., G. L. Kelly, A. Janic, M. J. Herold, and A. Strasser. 2018. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–13. doi:10.1038/cdd.2017.169.
  • Bargonetti, J., and J. J. Manfredi. 2002. Multiple roles of the tumor suppressor p53. Curr. Opin. Oncol. 14:86–91. doi:10.1097/00001622-200201000-00015.
  • Bernhardt, J. H. 1992. Non-ionizing radiation safety: Radiofrequency radiation, electric and magnetic fields. Phys. Med. Biol. 37:807–44. doi:10.1088/0031-9155/37/4/001.
  • Bolzán, A. D., and M. S. Bianchi. 2018. DNA and chromosome damage induced by bleomycin in mammalian cells: An update. Mutat Res Rev Mutat Res 775:51–62. doi:10.1016/j.mrrev.2018.02.003.
  • Boreham, D. R., and R. E. Mitchel. 1991. DNA lesions that signal the induction of radioresistance and DNA repair in yeast. Radiat. Res. 128:19–28. doi:10.2307/3578062.
  • Cao, Y., Q. Xu, Z. D. Jin, Z. Zhou, J. H. Nie, and J. Tong. 2011. Induction of adaptive response: Pre-exposure of mice to 900 MHz radiofrequency fields reduces hematopoietic damage caused by subsequent exposure to ionising radiation. Int. J. Radiat. Biol. 87:720–28. doi:10.3109/09553002.2010.550981.
  • Cheng, G. H., N. Wu, D. F. Jiang, H. G. Zhao, Q. Zhang, J. F. Wang, S.-L. Gong, et al. 2010. Increased levels of p53 and PARP-1 in EL-4 cells probably related with the immune adaptive response induced by low dose ionizing radiation in vitro. Biomed. Environ. Sci. 23:487–95. doi:10.1016/S0895-3988(11)60012-3.
  • Crooke, S. T., and W. T. Bradner. 1976. Bleomycin, a review. J. Med. 7:333–428.
  • Dasdag, S., and M. Z. Akdag. 2016. The link between radio frequencies emitted from wireless technologies and oxidative stress. J. Chem. Neuroanat. 75:85–93. doi:10.1016/j.jchemneu.2015.09.001.
  • Dasdag, S., M. Z. Akdag, E. Ulukaya, A. K. Uzunlar, and A. R. Ocak. 2009. Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn Biol Med 28:342–54. doi:10.3109/15368370903206556.
  • Debbi, K., G. J, N. Scher, D. É, and F. Mornex. 2017. Doses aux organes à risque en radiothérapie conformationnelle et en radiothérapie stéréotaxique: Le foie. Cancer/Radiothérapie 21:604–12. doi:10.1016/j.canrad.2017.07.042.
  • Dimova, E. G., P. E. Bryant, and S. Chankova. 2008. “Adaptive response” - some underlying mechanisms and open questions. Genet. Mol. Biol. 31:396–408. doi:10.1590/S1415-47572008000300002.
  • Falone, S., A. Sannino, S. Romeo, O. Zeni, S. J. Santini, R. Rispoli, F. Amicarelli, M. R. Scarfì, et al. 2018. Protective effect of 1950 MHz electromagnetic field in human neuroblastoma cells challenged with menadione. Sci Rep 8:13234. doi:10.1038/s41598-018-31636-7.
  • Feinendegen, L. E., M. Pollycove, and C. A. Sondhaus. 2004. Responses to low doses of ionizing radiation in biological systems. Nonlinearity Biol Toxicol Med. 2:143–71. doi:10.1080/15401420490507431.
  • Ferreira, A. R., F. Bonatto, M. A. De Bittencourt Pasquali, M. Polydoro, F. Dal-Pizzol, C. Fernández, Á. A. A. de Salles, J. C. F. Moreira, et al. 2006. Oxidative stress effects on the central nervous system of rats after acute exposure to ultra high frequency electromagnetic fields. Bioelectromagnetics 27:487–93. doi:10.1002/bem.20233.
  • Gandhi, N. M. 2018. Cellular adaptive response and regulation of HIF after low dose gamma-radiation exposure. Int. J. Radiat. Biol. 94:809–14. doi:10.1080/09553002.2018.1493241.
  • Gherardini, L., G. Ciuti, S. Tognarelli, and C. Cinti. 2014. Searching for the perfect wave: The effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci. 15:5366–87. doi:10.3390/ijms15045366.
  • Haghani, M., S. M. J. Mortazavi, D. Sardari, M. A. Mosleh-Shirazi, and A. Mansouri. 2013. Assessment of the role of specific absorption rate of mobile phones on the induction of microwave-induced survival adaptive responses after exposure to lethal doses of gamma radiation. Int. J. Radiat. Res. 11:167–73.
  • Hao, W., T. Qi, L. Pan, R. Wang, B. Zhu, L. Aguilera-Aguirre, Z. Radak, T. K. Hazra, S. A. Vlahopoulos, A. Bacsi, et al. 2018. Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biol. 18:43–53. doi:10.1016/j.redox.2018.06.002.
  • He, Q., Y. Sun, L. Zong, J. Tong, and Y. Cao. 2016. Induction of poly(ADP-ribose) polymerase in mouse bone marrow stromal cells exposed to 900 MHz radiofrequency fields: preliminary observations. Biomed. Res. Int. 2016:4918691. doi:10.1155/2016/4918691.
  • He, Q., L. Zong, Y. Sun, P. Vijayalaxmi, J. T, J. Tong, Y. Cao, et al. 2017. Adaptive response in mouse bone marrow stromal cells exposed to 900MHz radiofrequency fields: Impact of poly (ADP-ribose) polymerase (PARP). Mutat. Res. Genet. Toxicol. Environ. 820:19–25. doi:10.1016/j.mrgentox.2017.05.007.
  • IARC. 2017. Monographs on the evaluation of carcinogenic risks to humans. IARC. 111:1–136.
  • ICNIRP. 2020. Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 118: 483–524. doi:10.1097/HP.0000000000001210.
  • Jiang, B., C. Zong, H. Zhao, Y. Ji, J. Tong, and Y. Cao. 2013. Induction of adaptive response in mice exposed to 900MHz radiofrequency fields: Application of micronucleus assay. Mutat. Res. 751:127–29. doi:10.1016/j.mrgentox.2012.12.003.
  • Lazo, J. S., D. G. Hoyt, S. M. Sebti, and B. R. Pitt. 1990. Bleomycin: A pharmacologic tool in the study of the pathogenesis of interstitial pulmonary fibrosis. Pharmacol. Ther. 47:347–58. doi:10.1016/0163-7258(90)90061-6.
  • Marjanovic Cermak, A. M., I. Pavicic, B. Tariba Lovakovic, A. Pizent, and I. Trosic. 2017. In vitro non-thermal oxidative stress response after 1800 MHz radiofrequency radiation. Gen. Physiol. Biophys. 36:407–14. doi:10.4149/gpb_2017007.
  • Matsumoto, H., A. Takahashi, and T. Ohnishi. 2004. Radiation-induced adaptive responses and bystander effects. Biol. Sci. Space 18:247–54. doi:10.2187/bss.18.247.
  • Miura, Y., and T. Endo. 2010. Survival responses to oxidative stress and aging. Geriatr Gerontol Int. 10 Suppl 1:S1–9. doi:10.1111/j.1447-0594.2010.00597.x.
  • Mortazavi, S. M. J., M. Motamedifar, A. R. Mehdizadeh, G. Namdari, and M. Taheri. 2012. The effect of pre-exposure to radiofrequency radiations emitted from a GSM mobile phone on the suseptibility of BALB/c mice to escherichia coli. Biomed. Phys. Eng. 2:139–146.
  • Murrell, G. A., M. J. Francis, and L. Bromley. 1990. Modulation of fibroblast proliferation by oxygen free radicals. Biochem. J. 265:659–65. doi:10.1042/bj2650659.
  • Ozgur, E., G. Guler, G. Kismali, and N. Seyhan. 2014. Mobile phone radiation alters proliferation of hepatocarcinoma cells. Cell Biochem. Biophys. 70:983–91. doi:10.1007/s12013-014-0007-4.
  • Pascal, J. M. 2018. The comings and goings of PARP-1 in response to DNA damage. DNA Repair (Amst.) 71:177–82. doi:10.1016/j.dnarep.2018.08.022.
  • Poljsak, B., D. Šuput, and I. Milisav. 2013. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev. 2013:956792. doi:10.1155/2013/956792.
  • Ray Chaudhuri, A., and A. Nussenzweig. 2017. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18:610–21. doi:10.1038/nrm.2017.53.
  • Remacle, J., D. Lambert, M. Raes, E. Pigeolet, C. Michiels, and O. Toussaint. 1992. Importance of various antioxidant enzymes for cell stability. Confrontation between theoretical and experimental data. Biochem. J. 286:41–46. doi:10.1042/bj2860041.
  • Sakamoto-Hojo, E. T., S. S. Mello, E. Pereira, A. L. Fachin, R. S. Cardoso, C. M. Junta, P. Sandrin-Garcia, E. A. Donadi, G. A. S. Passos, et al. 2003. Gene expression profiles in human cells submitted to genotoxic stress. Mutat. Res. 544:403–13. doi:10.1016/j.mrrev.2003.07.004.
  • Sampath, H., V. Vartanian, M. R. Rollins, K. Sakumi, Y. Nakabeppu, and R. S. Lloyd. 2012. 8-Oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction. PLoS One 7:e51697. doi:10.1371/journal.pone.0051697.
  • Samson, L., and J. Cairns. 1977. A new pathway for DNA repair in Escherichia coli. Nature 267:281–83. doi:10.1038/267281a0.
  • Sannino, A., M. Sarti, S. B. Reddy, T. J. Prihoda, Vijayalaxmi, and M. R. Scarfì. 2009. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat. Res. 171:735–42. doi:10.1667/RR1687.1.
  • Sannino, A., O. Zeni, S. Romeo, R. Massa, G. Gialanella, G. Grossi, et al. 2014. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: Resistance to ionizing radiation-induced damage. J. Radiat. Res. 55:210–17. doi:10.1093/jrr/rrt106.
  • Sannino, A., O. Zeni, M. Sarti, S. Romeo, S. B. Reddy, M. A. Belisario, et al. 2011. Induction of adaptive response in human blood lymphocytes exposed to 900 MHz radiofrequency fields: Influence of cell cycle. Int. J. Radiat. Biol. 87:993–99. doi:10.3109/09553002.2011.574779.
  • Santini, S. J., V. Cordone, S. Falone, M. Mijit, C. Tatone, F. Amicarelli, G. Di Emidio, et al. 2018. Role of mitochondria in the oxidative stress induced by electromagnetic fields: focus on reproductive systems. Oxid Med Cell Longev 2018:5076271. doi:10.1155/2018/5076271.
  • Sasaki, M. S., Y. Ejima, A. Tachibana, T. Yamada, K. Ishizaki, T. Shimizu, T. Nomura, et al. 2002. DNA damage response pathway in radioadaptive response. Mutat. Res. 504:101–18. doi:10.1016/S0027-5107(02)00084-2.
  • Schlade-Bartusiak, K., A. Stembalska-Kozlowska, M. Bernady, M. Kudyba, and M. Sasiadek. 2002. Analysis of adaptive response to bleomycin and mitomycin C. Mutat. Res. Genet. Toxico.l Environ. Mutagen . 513:75–81. doi:10.1016/S1383-5718(01)00288-1.
  • Schreck, R., P. Rieber, and P. A. Baeuerle. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10:2247–58. doi:10.1002/j.1460-2075.1991.tb07761.x.
  • Sharma, A., Shrivastava, S., and Shukla, S. 2021. Oxidative damage in the liver and brain of the rats exposed to frequency-dependent radiofrequency electromagnetic exposure: biochemical and histopathological evidence. Free Radic Res, 1–12.
  • Sisakht, M., M. Darabian, A. Mahmoodzadeh, A. Bazi, S. M. Shafiee, P. Mokarram, Z. Khoshdel, et al. 2020. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int. J. Radiat. Biol. 96:561–76. doi:10.1080/09553002.2020.1721597.
  • Sun, Y., L. Zong, Z. Gao, S. Zhu, J. Tong, and Y. Cao. 2017. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields. Mutat. Res. 797-799:7–14. doi:10.1016/j.mrfmmm.2017.03.001.
  • Tatsumi, K., K. Ohashi, S. Taminishi, T. Okano, A. Yoshioka, and M. Shima. 2008. Reference gene selection for real-time RT-PCR in regenerating mouse livers. Biochem. Biophys. Res. Commun. 374:106–10. doi:10.1016/j.bbrc.2008.06.103.
  • Vibet, S., C. Goupille, P. Bougnoux, J.-P. Steghens, J. Goré, and K. Mahéo. 2008. Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic. Biol. Med. 44:1483–91. doi:10.1016/j.freeradbiomed.2008.01.009.
  • Vijayalaxmi, C. Y., and M. R. Scarfi. 2014. Adaptive response in mammalian cells exposed to non-ionizing radiofrequency fields: A review and gaps in knowledge. Mutat Res Rev Mutat Res 36–45. doi:10.1016/j.mrrev.2014.02.002.
  • Volkmann, X., U. Fischer, M. J. Bahr, M. Ott, F. Lehner, M. Macfarlane, G. M. Cohen, M. P. Manns, K. Schulze-Osthoff, H. Bantel, et al. 2007. Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology 46:1498–508. doi:10.1002/hep.21846.
  • Vousden, K. H., and X. Lu. 2002. Live or let die: The cell’s response to p53. Nat. Rev. Cancer 2:594–604. doi:10.1038/nrc864.
  • Wang, X., L. Wei, J. M. Cramer, B. J. Leibowitz, C. Judge, M. Epperly, et al. 2015. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep 5:8566.
  • Wolff, S. 1998. The adaptive response in radiobiology: Evolving insights and implications. Environ. Health Perspect. 106:277–83. doi:10.1289/ehp.98106s1277.
  • Yakymenko, I., O. Tsybulin, E. Sidorik, D. Henshel, O. Kyrylenko, and S. Kyrylenko. 2016. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 35:186–202. doi:10.3109/15368378.2015.1043557.
  • Zeni, O., A. Sannino, S. Romeo, R. Massa, M. Sarti, A. B. Reddy, T. J. V. Prihoda, M. R. Scarfì, et al. 2012. Induction of an adaptive response in human blood lymphocytes exposed to radiofrequency fields: Influence of the universal mobile telecommunication system (UMTS) signal and the specific absorption rate. Mutat. Res. 747:29–35. doi:10.1016/j.mrgentox.2012.03.013.
  • Zong, C., Y. Ji, Q. He, S. Zhu, F. Qin, J. Tong, Y. Cao, et al. 2015. Adaptive response in mice exposed to 900 MHZ radiofrequency fields: Bleomycin-induced DNA and oxidative damage/repair. Int. J. Radiat. Biol. 91:270–76. doi:10.3109/09553002.2014.980465.
  • Zuo, L., T. Zhou, B. K. Pannell, A. C. Ziegler, and T. M. Best. 2015. Biological and physiological role of reactive oxygen species–the good, the bad and the ugly. Acta. Physiol. (Oxf) 214:329–48. doi:10.1111/apha.12515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.