212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue

ORCID Icon, ORCID Icon & ORCID Icon
Pages 133-143 | Received 02 Dec 2022, Accepted 16 Sep 2023, Published online: 09 Oct 2023

References

  • Ahmad, T., and Y. J. Suzuki. 2019. Juglone in oxidative stress and cell signaling. Antioxidants 8 :91. doi:10.3390/antiox8040091.
  • Akpınar, D., D. K. Gok, E. Hidisoglu, M. Aslan, S. Ozen, A. Agar, and P. Yargicoglu. 2016. Effects of pre-and postnatal exposure to extremely low-frequency electric fields on mismatch negativity component of the auditory event-related potentials: Relation to oxidative stress. Electromagn. Biol. Med. 35 :245–59. doi:10.3109/15368378.2015.1076727.
  • Akpinar, D., N. Ozturk, S. Ozen, A. Agar, and P. Yargicoglu 2012. The effect of different strengths of extremely low-frequency electric fields on antioxidant status, lipid peroxidation, and visual evoked potentials. Electromagn Biol Med 31 :436–48. doi:10.3109/15368378.2012.692342.
  • Aldinucci, C., J. B. Garcia, M. Palmi, G. Sgaragli, A. Benocci, A. Meini, and P. G. Pessina. 2003. The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics 24 :109–17. doi:10.1002/bem.10071.
  • Anderson, L. E., J. E. Morris, D. L. Miller, C. N. Rafferty, K. L. Ebi, and L. B. Sasser. 2001. Large Granular Lymphocytic (LGL) leukemia in rats exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics 22 :185–93. doi:10.1002/bem.37.
  • Aslankoc, R., N. Gumral, M. Saygin, N. Senol, H. Asci, F. N. Cankara, and S. Comlekci. 2018. The impact of electric fields on testis physiopathology, sperm parameters and DNA integrity—the role of resveratrol. Andrologia 50 :e12971. doi:10.1111/and.12971.
  • Azman, M., and N. Senol. 2016. The prevention of the damages of iron (Fe) and zinc (Zn) with the juglone (5-Hydroxy-1, 4-Naphthoquinone) antioxidant activity in the testicular tissue of rats. Fresenius Environ. Bull. 25:5830–41.
  • Bahaodini, A., M. Owjfard, A. Tamadon, and S. M. Jafari. 2015. Low frequency electromagnetic fields long-term exposure effects on testicular histology, sperm quality and testosterone levels of male rats. Asian Pac. J. Reprod 4 :195–200. doi:10.1016/j.apjr.2015.06.001.
  • Baltaci, A. K., R. Mogulkoc, A. Salbacak, I. Celik, and A. Sivrikaya. 2012. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues. Bratisl. Lek. Listy 113 (7):400–03. doi:10.4149/bll_2012_090.
  • Bancroft, J. D., A. Steven, and D. R. Turner. 1996. Theory and practice of histological techniques, Vol. 766, 129. New York, Edinburg, London: Churchill Livingstone.
  • Bediz, C. S., A. K. Baltaci, R. Mogulkoc, and E. Öztekin. 2006. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J. Exp. Med. 208 :133–40. doi:10.1620/tjem.208.133.
  • Benov, L. C., P. A. Antonov, and S. R. Ribarov. 1994. Oxidative damage of the membrane lipids after electroporation. Gen. Physiol. Biophys. 13 :85–97.
  • Cevik, A., M. Aydin, N. Timurkaan, A. M. Apaydin, and M. Yuksel. 2017. Pathological and immunohistochemical effects of electromagnetic fields on rat liver. Indian J. Anim. Res. 51 :1134–37. doi:10.18805/ijar.B-765.
  • Challis, L. J. 2005. Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics 26 :S98–S106. doi:10.1002/bem.20119.
  • Chobot, V., and F. Hadacek. 2009. Milieu-dependent pro-and antioxidant activity of juglone may explain linear and nonlinear effects on seedling development. J. Chem. Ecol. 35 :383–90. doi:10.1007/s10886-009-9609-5.
  • de Castro, E., S. H. de Castrode Castro, and T. E. Johnson. 2004. Isolation of long-lived mutants in Caenorhabditis elegans using selection for resistance to juglone. Free Radic. Biol. Med. 37 :139–45. doi:10.1016/j.freeradbiomed.2004.04.021.
  • de Kleijn, S., M. Bouwens, B. L. Verburg-van Kemenade, J. J. Cuppen, G. Ferwerda, and P. W. Hermans. 2011. Extremely low frequency electromagnetic field exposure does not modulate toll-like receptor signaling in human peripheral blood mononuclear cells. Cytokine 54 :43–50. doi:10.1016/j.cyto.2010.12.016.
  • Fan, W., F. Qian, Q. Ma, P. Zhang, T. Chen, C. Chen, and Z. Yu. 2015. 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. Int. J. Clin. Exp 8 :7394.
  • Farahna, M., M. A. A. Omer, M. E. Garalnabi, A. A. Al-Ganim, S. Abdelkareem, and Y. M. Busharaa. 2014. The effects of static magnetic field on rats brain, lungs, liver, pancreas and blood electrolytes. NeuroQuantology 12 :230–36. doi:10.14704/nq.2014.12.2.721.
  • Galam, L., P. T. Parthasarathy, Y. Cho, S. H. Cho, Y. C. Lee, R. F. Lockey, and N. Kolliputi. 2015. Adenovirus-mediated transfer of the SOCS-1 gene to mouse lung confers protection against hyperoxic acute lung injury. Free Radic. Biol. Med. 84:196–205. doi:10.1016/j.freeradbiomed.2015.03.036.
  • Gharib, O. A. 2011. Role of kombucha tea in the control of EMF 950 MHz induced injury in rat heart and lung organs. Asian. J .Pharm. Clin. Res 1 :281–88.
  • Gohil, D., G. C. Panigrahi, S. K. Gupta, K. A. Gandhi, P. Gera, P. Chavan, D. Sharma, S. Sandur, and V. Gota. 2023. Acute and sub-acute oral toxicity assessment of 5-hydroxy-1, 4-naphthoquinone in mice. Drug. Chem. Toxicol. 46 :795–808. doi:10.1080/01480545.2022.2104306.
  • Guler, G., N. Seyhan, and A. Aricioglu 2006. Effects of static and 50 hz alternating electric fields on superoxide dismutase activity and TBARS levels in guinea pigs. Gen. Physiol. Biophys. 25 :177.
  • Güler, G., N. Seyhan Atalay, C. Özogul, and D. Erdogan. 1996. Biochemical and structural approach to collagen synthesis under electric fields. Gen. Physiol. Biophys. 15 :429–40.
  • Güler, G., Z. Türközer, and N. Seyhan. 2007. Electric field effects on Guinea pig serum: The role of free radicals. Electromagn. Biol. Med. 26 :207–23. doi:10.1080/15368370701585490.
  • Güler, G., Z. Turkozer, A. Tomruk, and N. Seyhan. 2008. The protective effects of N-acetyl-L-cysteine and epigallocatechin-3-gallate on electric field-induced hepatic oxidative stress. Int. J. Radiat. Biol. 84 :669–80. doi:10.1080/09553000802241747.
  • Harakawa, S., N. Inoue, T. Hori, K. Tochio, T. Kariya, K. Takahashi, F. Doge, H. Suzuki, and H. Nagasawa. 2005. Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats. Bioelectromagnetics 26 :589–94. doi:10.1002/bem.20137.
  • Hashimoto, M., K. Hiwatashi, K. Ichiyama, R. Morita, T. Sekiya, A. Kimura, and A. Yoshimura. 2011. SOCS1 regulates type I/type II NKT cell balance by regulating IFNγ signaling. Int. Immunol. 23 :165–76. doi:10.1093/intimm/dxq469.
  • Jackson, C. W., E. Hunt, S. Sharkh, and P. L. Newland. 2011. Static electric fields modify the locomotory behaviour of cockroaches. J. Exp. Biol. 214 :2020–26. doi:10.1242/jeb.053470.
  • Jeon, S. R., J. W. Lee, P. S. Jang, N. G. Chung, B. Cho, and D. C. Jeong. 2015. Anti-leukemic properties of deferasirox via apoptosis in murine leukemia cell lines. Blood Res. 50 :33–39. doi:10.5045/br.2015.50.1.33.
  • Jin, Y. B., B. J. Pyun, H. Jin, H. D. Choi, J. K. Pack, N. Kim, and Y. S. Lee. 2012. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic field on immune functions in rats. Int. J. Radiat. Biol. 88 :814–21. doi:10.3109/09553002.2012.711501.
  • Jo, D., D. Liu, S. Yao, R. D. Collins, and J. Hawiger. 2005. Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nat. Med. 11 :892–98. doi:10.1038/nm1269.
  • Joussen, A. M., S. Doehmen, M. L. Le, K. Koizumi, S. Radetzky, T. U. Krohne, and N. Kociok. 2009. TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol. Vis. 15:1418.
  • Kantar Gok, D., D. Akpinar, P. Yargicoglu, S. Ozen, M. Aslan, N. Demir, N. Derin, and A. Agar. 2014. Effects of extremely low-frequency electric fields at different intensities and exposure durations on mismatch negativity. Neuroscience 272:154–66. doi:10.1016/j.neuroscience.2014.04.056.
  • Khalil, R. G., A. M. Ibrahim, and H. H. Bakery. 2022. Juglone: “a novel immunomodulatory, antifibrotic, and schistosomicidal agent to ameliorate liver damage in murine schistosomiasis mansoni”. Int. Immunopharmacol. 113:109415. doi:10.1016/j.intimp.2022.109415.
  • Kilkenny, C., W. Browne, I. C. Cuthill, M. Emerson, and D. G. Altman. 2010. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. British. J. Pharmacol. 160 :1577. doi:10.1111/j.1476-5381.2010.00872.x.
  • Kim, S. J., Y. W. Jang, K. E. Hyung, D. K. Lee, K. H. Hyun, S. H. Jeong, and K. W. Hwang. 2017. Extremely low‐frequency electromagnetic field exposure enhances inflammatory response and inhibits effect of antioxidant in RAW 264.7 cells. Bioelectromagnetics 38 :374–85. doi:10.1002/bem.22049.
  • Liu, J., X. Huang, S. Hu, H. He, and Z. Meng. 2019. Dexmedetomidine attenuates lipopolysaccharide induced acute lung injury in rats by inhibition of caveolin-1 downstream signaling. Biomed. Pharmacother. 118:109314. doi:10.1016/j.biopha.2019.109314.
  • Lorrain, P. D., and D. Carson. 1970. Electrostatic fields. In Electromagnetic fields and waves, ed. P. Lorrain and D. Carson, 40–84. San Fransisco: WH Freeman and Co.
  • Lupke, M., J. Rollwitz, and M. Simko. 2004. Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in mono mac 6 cells. Free Radic. Res. 38 :985–93. doi:10.1080/10715760400000968.
  • Margonato, V., A. Veicsteinas, R. Conti, P. Nicolini, and P. Cerretelli. 1993. Biologic effects of prolonged exposure to ELF electromagnetic fields in rats. I. 50 Hz electric fields. Bioelectromagnetics 14 :479–93. doi:10.1002/bem.2250140508.
  • Marine, J. C., D. J. Topham, C. McKay, D. Wang, E. Parganas, D. Stravopodis, and J. N. Ihle. 1999. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98 :609–16. doi:10.1016/S0092-8674(00)80048-3.
  • Masek, A., E. Chrzescijanska, M. Latos-Brozio, and M. Zaborski. 2019. Characteristics of juglone (5-hydroxy-1, 4, -naphthoquinone) using voltammetry and spectrophotometric methods. Food Chem. 301:125279. doi:10.1016/j.foodchem.2019.125279.
  • McIlwain, D. R., T. Berger, and T. W. Mak. 2015. Caspase functions in cell death and disease. Cold Spring Harb. Perspect Biol. 5 :a008656. doi:10.1101/cshperspect.a008656.
  • Miliša, M., D. Đikić, T. Mandić, D. Grozić, I. Čolić, and A. Ostojić. 2017. Response of aquatic protists to electric field exposure. Int. J. Radiat. Biol. 93 :818–30. doi:10.1080/09553002.2017.1321809.
  • Munday, R., and C. M. Munday. 2000. Induction of quinone reductase and glutathione transferase in rat tissues by juglone and plumbagin. Planta Med. 66 :399–402. doi:10.1055/s-2000-8576.
  • Nakashima, T., A. Yokoyama, Y. Onari, H. Shoda, Y. Haruta, N. Hattori, and N. Kohno. 2008. Suppressor of cytokine signaling 1 inhibits pulmonary inflammation and fibrosis. J. Allergy Clin. Immunol. 121 :1269–76. doi:10.1016/j.jaci.2008.02.003.
  • Nenadis, N., and M. P. Sigalas. 2008. A DFT study on the radical scavenging activity of maritimetin and related aurones. J. Phys. Chem. A 112 :12196–202. doi:10.1021/jp8058905.
  • Odacı, E., and C. Özyılmaz. 2015. Exposure to a 900 MHz electromagnetic field for 1 hour a day over 30 days does change the histopathology and biochemistry of the rat testis. Int. J. Radiat. Biol. 91 :547–54. doi:10.3109/09553002.2015.1031850.
  • Okatan, D. Ö., A. E. Okatan, H. Hancı, S. Demir, S. Ö. Yaman, S. Çolakoğlu, and E. Odacı. 2018. Effects of 900-MHz electromagnetic fields exposure throughout middle/late adolescence on the kidney morphology and biochemistry of the female rat. Toxicol. Ind. Health 34 :693–702. doi:10.1177/0748233718781292.
  • Peng, X., Y. Nie, J. Wu, Q. Huang, and Y. Cheng. 2015. Juglone prevents metabolic endotoxemia-induced hepatitis and neuroinflammation via suppressing TLR4/NF-κB signaling pathway in high-fat diet rats. Biochem. Biophys. Res. Commun. 462 :245–50. doi:10.1016/j.bbrc.2015.04.124.
  • Qi, G., X. Zuo, L. Zhou, E. Aoki, A. Okamula, M. Watanebe, and F. Shimamoto. 2015. Effects of extremely low-frequency electromagnetic fields (ELF-EMF) exposure on B6C3F1 mice. Environ. Health Prev. 20 :287–93. doi:10.1007/s12199-015-0463-5.
  • Ragy, M. M. 2015. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats. Electromagn. Biol. Med. 34 :279–84. doi:10.3109/15368378.2014.906446.
  • Repacholi, M. H., and B. Greenebaum. 1999. Interaction of static and extremely low frequency electric and magnetic fields with living systems: Health effects and research needs. Bioelectromagnetics 20 :133–60. doi:10.1002/(SICI)1521-186X(1999)20:3<133:AID-BEM1>3.0.CO;2-O.
  • Rollwitz, J., M. Lupke, and M. Simko´. 2004. Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim. Biophys. Acta - Gen. Subj 1674 :231–38. doi:10.1016/j.bbagen.2004.06.024.
  • Sachithanandan, N., K. L. Graham, S. Galic, J. E. Honeyman, S. L. Fynch, K. A. Hewitt, and T. W. Kay. 2011. Macrophage deletion of SOCS1 increases sensitivity to LPS and palmitic acid and results in systemic inflammation and hepatic insulin resistance. Diabetes 60 :2023–31. doi:10.2337/db11-0259.
  • Saling, S. C., J. F. Comar, M. S. Mito, R. M. Peralta, and A. Bracht. 2011. Actions of juglone on energy metabolism in the rat liver. Toxicol. App. l Pharmacol. 257 :319–27. doi:10.1016/j.taap.2011.09.004.
  • Santos, M. R. G., C. M. Queiroz-Junior, M. F. M. Madeira, and F. S. Machado. 2020. Suppressors of cytokine signaling (SOCS) proteins in inflammatory bone disorders. Bone 140:115538. doi:10.1016/j.bone.2020.115538.
  • Saygin, M., O. Ozturk, O. Ozmen, I. Ilhan, T. Gonca, N. Gumral, and R. Aslankoc. 2016. The impact of methotrexate on lung inflammatory and apoptotic pathway biomarkers—the role of gallic acid. Biomed. Pharmacother 84:1689–96. doi:10.1016/j.biopha.2016.10.077.
  • Seetha, A., H. Devaraj, and G. Sudhandiran. 2020. Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J. Biochem. Mol. Toxicol. 34 :e22433. doi:10.1002/jbt.22433.
  • Seyhan, N., and G. Güler. 2006. Review of in vivo static and ELF electric fields studies performed at Gazi Biophysics department. Electromagn. Biol. Med. 25 :307–23. doi:10.1080/15368370601054803.
  • Shang, C., Y. Cao, C. Sun, and Y. Li. 2022. Comparison of the excited-state proton transfer and single electron transfer mechanisms of the natural antioxidant Juglone and its dimer 3, 3′-bijuglone. J. Photochem. Photobiol. A Chem. 427:113825. doi:10.1016/j.jphotochem.2022.113825.
  • Shen, Z. J., S. Esnault, L. A. Rosenthal, R. J. Szakaly, R. L. Sorkness, P. R. Westmark, and J. S. Malter. 2008. Pin1 regulates TGF-β1 production by activated human and murine eosinophils and contributes to allergic lung fibrosis. J. Clin. Investig 118 :479–90. doi:10.1172/JCI32789.
  • Simko´, M., S. Droste, R. Kriheuber, and D. G. Weiss. 2001. Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur. J. Cell Biol. 80 :562–66. doi:10.1078/0171-9335-00187.
  • Soffritti, M., E. Tibaldi, M. Padovani, D. G. Hoel, L. Giuliani, L. Bua, and F. Belpoggi. 2016. Synergism between sinusoidal‐50 Hz magnetic field and formaldehyde in triggering carcinogenic effects in male Sprague–Dawley rats. Am. J. Ind. Med. 59 :509–21. doi:10.1002/ajim.22598.
  • Soto-Maldonado, C., M. Vergara-Castro, J. Jara-Quezada, E. Caballero-Valdés, A. Müller-Pavez, M. E. Zúñiga-Hansen, and C. Altamirano. 2019. Polyphenolic extracts of walnut (Juglans regia) green husk containing juglone inhibit the growth of HL-60 cells and induce apoptosis. Electron. J. Biotechnol. 39:1–7. doi:10.1016/j.ejbt.2019.02.001.
  • Sugie, S., K. Okamoto, K. W. Rahman, K. T. Tanaka, K. Kawai, J. Yamahara, and H. Mori. 1998. Inhibitory effects of plumbagin and juglone on azoxymethane-induced intestinal carcinogenesis in rats. Cancer Lett. 127 :177–83. doi:10.1016/S0304-3835(98)00035-4.
  • Taleb, S., M. Romain, B. Ramkhelawon, C. Uyttenhove, G. Pasterkamp, O. Herbin, and Z. Mallat. 2009. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 206 :2067–77. doi:10.1084/jem.20090545.
  • Tamiya, T., I. Kashiwagi, R. Takahashi, H. Yasukawa, and A. Yoshimura. 2011. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: Regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler. Thromb. Vasc. Bio 31 :980–85. doi:10.1161/ATVBAHA.110.207464.
  • Tanaka, K., K. Ichiyama, M. Hashimoto, H. Yoshida, T. Takimoto, G. Takaesu, and A. Yoshimura. 2008. Loss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-γ on STAT3 and smads. J. Immunol. 180 :3746–56. doi:10.4049/jimmunol.180.6.3746.
  • Tan, D. T. C., H. Osman, S. Mohamad, and A. H. Kamaruddin. 2012. Synthesis and antibacterial activity of juglone derivatives. J. Chem. Eng. 6 :84–89.
  • Tüfekçi, K. K., E. G. Bakırhan, and B. Z. Altunkaynak. 2022. Evaluation of the protective effects of folic acid on the lung exposed to 900-MHZ electromagnetic field: A stereological and histopathological study. J. Exp. Clin. Med. 39 :204–09. doi:10.52142/omujecm.39.1.40.
  • Tumkaya, L., A. Yilmaz, K. Akyildiz, T. Mercantepe, Z. A. Yazici, and H. Yilmaz. 2019. Prenatal effects of a 1800-MHz electromagnetic field on rat livers. Cells Tissues Organs (Print) 207 :187–96. doi:10.1159/000504506.
  • Türedi, S., H. Hancı, S. Çolakoğlu, H. Kaya, and E. Odacı. 2016. Disruption of the ovarian follicle reservoir of prepubertal rats following prenatal exposure to a continuous 900-MHz electromagnetic field. Int. J. Radiat. Biol. 92 :329–37. doi:10.3109/09553002.2016.1152415.
  • Türedi, S., H. Hancı, Z. Topal, D. Ünal, T. Mercantepe, I. Bozkurt, and E. Odacı. 2015. The effects of prenatal exposure to a 900-MHz electromagnetic field on the 21-day-old male rat heart. Electromagn. Biol. Med. 34 :390–97. doi:10.3109/15368378.2014.952742.
  • Türedi, S., G. Kerimoğlu, T. Mercantepe, and E. Odacı. 2017. Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22–59. Int. J. Radiat. Biol. 93 :990–99. doi:10.1080/09553002.2017.1350768.
  • Wang, P., C. Gao, W. Wang, L. P. Yao, J. Zhang, S. D. Zhang, and Y. J. Fu. 2018. Juglone induces apoptosis and autophagy via modulation of mitogen-activated protein kinase pathways in human hepatocellular carcinoma cells. Food and Chemical Toxicology, 116, 40-50.0 through a reactive oxygen species-dependent mechanism. Food Chem. Toxicol. 50 :590–96. doi:10.1016/j.fct.2018.04.004.
  • Wyszkowska, J., T. Jędrzejewski, J. Piotrowski, A. Wojciechowska, M. Stankiewicz, and W. Kozak. 2018. Evaluation of the influence of in vivo exposure to extremely low-frequency magnetic fields on the plasma levels of pro-inflammatory cytokines in rats. Int. J. Radiat. Biol. 94 :909–17. doi:10.1080/09553002.2018.1503428.
  • Xu, H. L., X. F. Yu, S. C. Qu, X. R. Qu, and Y. F. Jiang. 2012. Juglone, from Juglans mandshruica maxim, inhibits growth and induces apoptosis in human leukemia cell HL-60 through a reactive oxygen species-dependent mechanism. Food Chem. Toxicol. 50 :590–96. doi:10.1016/j.fct.2012.01.002.
  • Yahyazadeh, A., E. G. Kıvrak, G. E. Koç, and Z. Altunkaynak. 2021. Protective effect of melatonin on the rat lung following exposure to a 900-MHz electromagnetic field: A stereological and histopathological study. J. Exp. Clin. Med. 38 :55–60. doi:10.52142/omujecm.38.2.1.
  • Yokus, B., D. U. Cakir, M. Z. Akdag, C. Sert, and N. Mete. 2005. Oxidative DNA damage in rats exposed to extremely low frequency electromagnetic fields. Free Radic. Res. 39 :317–23. doi:10.1080/10715760500043603.
  • Yoshimura, A., M. Ito, S. Chikuma, T. Akanuma, and H. Nakatsukasa. 2018. Negative regulation of cytokine signaling in immunity. Cold Spring Harb. Perspect Biol. 10 :a028571. doi:10.1101/cshperspect.a028571.
  • Zakavi, F., L. Golpasand Hagh, A. Daraeighadikolaei, A. Farajzadeh Sheikh, A. Daraeighadikolaei, and Z. Leilavi Shooshtari. 2013. Antibacterial effect of Juglans regia bark against oral pathologic bacteria. Int. J. Dent. 2013:1–5. doi:10.1155/2013/854765.
  • Zelová, H., and J. Hošek. 2013. TNF-α signalling and inflammation: Interactions between old acquaintances. J. Inflamm. Res. 62 :641–51. doi:10.1007/s00011-013-0633-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.