210
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

On Fracture Analysis of Cracked Graphite Components under Mixed Mode Loading

, &
Pages 781-791 | Received 29 Jun 2011, Accepted 25 Apr 2012, Published online: 07 Jul 2014

References

  • Y. Lv, G. Wen, and T.Q. Lei, Friction and wear behavior of C-based composites in situ reinforced with W2B5, J. Eur. Ceram. Soc., vol. 26, pp. 3477–3486, 2006.
  • Y. Cai, S. Fan, X. Yin, L. Zhang, L. Cheng, J. Jiang, and B. Dong, Effects of graphitization degree in three-dimensional needled C/SiC composites on tribological properties, Int. J. Appl. Ceram. Technol., vol. 8, no. 2, pp. 317–328, 2011.
  • A. Erdemir and A. Kovalchenko, Synthesis and tribology of carbide-derived carbon films, Int. J. Appl. Ceram. Technol., vol. 3, no. 3, pp. 236–244, 2006.
  • Y.C. Zhou, D.T. Wan, Y.W. Bao, and J.Y. Wang, In situ processing and high-temperature properties of Ti3Si(Al)C2/SiC composites, Int. J. Appl. Ceram. Technol., vol. 3, no. 1, pp. 47–54, 2006.
  • S. Tariolle, F. Thévenot, T. Chartier, and J.L. Besson, Properties of reinforced boron carbide laminar composites, J. Eur. Ceram. Soc., vol. 25, pp. 3639–3647, 2005.
  • C. Reynaud, F. Thévenot, T. Chartier, and J.L. Besson, Mechanical properties and mechanical behaviour of SiC dense-porous laminates, J. Eur. Ceram. Soc., vol. 25, pp. 589–597, 2005.
  • F. Erdogan and G.C. Sih, On the crack extension in plates under plane loading and transverse shear, J. Basic Eng. Trans. ASME, vol. 85, pp. 515–519, 1963.
  • G.C. Sih, Strain–energy–density factor applied to mixed mode crack problems, Int. J. Fract., vol. 10, pp. 305–321, 1974.
  • M.A. Hussain, S.L. Pu, and J. Underwood, Strain energy release rate for a crack under combined mode I and Mode II. In: Fracture Analysis ASTM STP 560, American Society for Testing and Materials, Philadelphia, PA, pp. 2–28, 1974.
  • K.F. Fischer, Critique on fracture criteria in mixed-mode-loading, Theoret. Appl. Fract. Mech., vol. 3, pp. 85–95, 1984.
  • C.Y. Zhang, An energy fracture criterion for mixed mode cracks, Eng. Fract. Mech., vol. 16, pp. 139, 1982.
  • Y. Zhao, Elliptic rule criterion for mixed mode crack propagation, Eng. Fract. Mech., vol. 37, pp. 283–292, 1990.
  • T. Yokobori, A. Kamei, and S. Kounosu, A concept of combined micro and macro fracture mechanics to brittle fracture, Int. J. Fract., vol. 10, pp. 375–377, 1973.
  • H. Awaji and S. Sato, Combined mode fracture toughness measurement by the disc test, J. Eng. Mater. Technol., vol. 100, pp. 175–182, 1978.
  • C. Atkinson, R.E. Smelser, and J. Sanchez, Combined mode fracture via the cracked Brazilian disc test, Int. J. Fract., vol. 18, pp. 279–291, 1982.
  • D.K. Shetty, A.R. Rosenfield, and W.H. Duckworth, Mixed-mode fracture in biaxial stress state: Application of the diametral-compression (Brazilian disk) test, Eng. Fract. Mech., vol. 26, no. 6, pp. 825–840, 1987.
  • G.R. Krishnan, X.L. Zhao, M. Zaman, and J.C. Roegiers, Fracture toughness of a soft sandstone, Int. J. Rock Mech. Min. Sci., vol. 35, no. 6, pp. 695–710, 1998.
  • K. Khan and N.A. Al-Shayea, Effect of specimen geometry and testing method on mixed I–II fracture toughness of a limestone rock from Saudi Arabia, Rock Mech. Rock Eng., vol. 33, no. 3, pp. 179–206, 2000.
  • S.H. Chang, C.I. Lee, and S. Jeon, Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimen, Eng. Geol., vol. 66, pp. 79–97, 2002.
  • N.A. Al-Shayea, Comparing reservoir and outcrop specimens for mixed mode I–II fracture toughness of a limestone rock formation at various conditions, Rock Mech. Rock Eng., vol. 35, no. 4, pp. 271–297, 2002.
  • M.R.M. Aliha, R. Ashtari, and M.R. Ayatollahi, Mode I and mode II fracture toughness testing for a coarse grain marble, Appl. Mech. Mater., vol. 5–6, pp. 181–188, 2006.
  • F.L. Lanaro, T.O. Sato, and O.V. Stephansson, Microcrack modelling of Brazilian tensile tests with the boundary element method, Int. J. Rock Mech. & Min. Sci., vol. 46, pp. 450–461, 2009.
  • A.R. Ingraffea, Mixed mode fracture initiation in Indiana limestone and Westerly granite, In: Proceedings of 22nd US Symposium on Rock Mechanics, Cambridge, MA , American Rock Mechanics Association, pp.186–191, 1981.
  • B. Benedikt, M. Kumosa, D. Armentrout, L. Kumosa, J.K. Sutter, and P.K. Predecki, Analysis of stresses in aluminum particles embedded inside unidirectional and woven graphite/polyimide composites subjected to large bending loads, Mech. Adv. Mater. Struct., vol. 11, pp. 31–49, 2004.
  • J.H. Kim and G.H. Paulino, On fracture criteria for mixed-mode crack propagation in functionally graded materials, Mech. Adv. Mater. Struct., vol. 14, pp. 227–244, 2007.
  • S. Suresh, C.F. Shih, A. Morrone, and N.P. O’Dowd, Mixed-mode fracture toughness of ceramic materials, J. Am. Ceram. Soc., vol. 73, pp. 1257–1267, 1990.
  • I.L. Lim, I.W. Johnston, S.K. Choi, and J.N. Boland, Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2—Mixed mode, Int. J. Rock Mech. Min. Sci.: Geomech. Abstr., vol. 31, no. 3, pp. 199–212, 1994.
  • M.R. Ayatollahi, M.R.M. Aliha, and M.M. Hassani, Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens, J. Mater. Sci. Eng. A, vol. 417, no. 1–2, pp. 348–356, 2006.
  • K. Khan and N.A. Al-Shayea, Effect of specimen geometry and testing method on mixed I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech. Rock Eng., vol. 33, no. 3, pp. 179–206, 2000.
  • L.B. Garrett, W.K. Young, and D.P. Randall, Effect of carbon nanotube reinforcement on fracture strength of composite adhesive joints, J. Mater. Sci., vol. 46, pp. 3370–3377, 2011.
  • T. Nozawa and H. Tanigawa, Cracking resistance of silicon carbide composites by single- and double-notched specimen techniques, Int. J. Appl. Ceram. Technol., vol. 7, no. 3, pp. 304–315, 2010.
  • H.A. Richard and K. Benitz, A loading device for the creation of mixed mode in fracture mechanics, Int. J. Fract., vol. 22, pp. 55–58, 1983.
  • S. Sato, H. Awaji, and H. Akuzawa, Fracture toughness of reactor graphite at high temperature, Carbon, vol. 16, pp. 95–102, 1978.
  • H. Awaji and S. Sato, Combined mode fracture toughness measurement by the disc test, J. Eng. Mater. Technol., vol. 100, pp. 175–182, 1978.
  • M. Li, M. Tsujimura, and M. Sakai, Crack-face grain interlocking/bridging of a polycrystalline graphite: The role in mixed mode fracture, Carbon, vol. 37, no. 10, pp. 1633–1639, 1999.
  • E.V. Lomakin, A.I. Zobnin, and A.V. Berezin, Finding the fracture toughness characteristics of graphite materials in plane strain, Strength Mater., vol. 7, no. 4, pp. 484–487, 1975.
  • Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, Measurement of fracture toughness for brittle materials under mixed mode impact loading using center-notched disk specimen, Zairyo/J. Soc. Mater. Sci. Jpn., vol. 49, no. 12, pp. 1324–1329, 2000.
  • Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen, Zairyo/J. Soc. Mater. Sci. Jpn., vol. 50, no. 3, pp. 224–229, 2001.
  • M.R. Ayatollahi and A.R. Torabi, Tensile fracture in notched polycrystalline graphite specimens, Carbon, vol. 48, pp. 2255–2265, 2010.
  • M.R. Ayatollahi and M.R.M. Aliha, Mixed mode fracture analysis of polycrystalline graphite—A modified MTS criterion, Carbon, vol. 46, pp. 1302–1308, 2008.
  • M.L. Williams, On the stress distribution at the base of a stationary crack, J. Appl. Mech., vol. 24, pp. 109–114, 1957.
  • M.R. Ayatollahi and M.R.M. Aliha, Cracked Brazilian disk specimen subjected to mode II deformation, Eng. Fract. Mech., vol. 72, pp. 493–503, 2005.
  • M.R. Ayatollahi and M.R.M. Aliha, On the use of Brazilian disk specimen for calculating mixed mode I–II fracture toughness of rock materials, Eng. Fract. Mech., vol. 75, pp. 4631–4641, 2008.
  • M.R. Ayatollahi and M.R.M. Aliha, Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion, Int. J. Solids Struct., vol. 46, pp. 311–321, 2009.
  • S.M. Dong, Y. Wang, and Y.M. Xia, Stress intensity factors for central cracked circular disk subjected to compression, Eng. Fract. Mech., vol. 71, no. 7–8, pp. 1135–1148, 2004.
  • T. Fett, Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions, Eng. Fract. Mech., vol. 68, pp. 1119–1136, 2001.
  • M.R. Ayatollahi and M.R.M. Aliha, Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading, J. Comput. Mater. Sci., vol. 38, pp. 660–670, 2007.
  • M.R. Ayatollahi and M. Nejati, An overdeterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis, Fatigue Fract. Eng. Mater. Struct., vol. 34, no. 3, pp. 159–176, 2011.
  • R.A. Schmidt, A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In: Proceedings of 21st US Symposium on Rock Mechanics. , Rolla, MO, American Rock Mechanics Association, pp.581–590, 1980.
  • M. Mostafavi and T.J. Marrow, In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading, Eng. Fract. Mech., 2011. DOI: 10.1016/j.engfracmech.2010.11.004.
  • M.R. Ayatollahi, F. Berto, and P. Lazzarin, Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite, Carbon, vol. 49, no. 7, pp. 2465–2474, 2011.
  • L.G.B. Manhani, L.C. Pardini, and F.L. Neto, Assessment of tensile strength of graphites by the iosipescu coupon test, Mater. Res., vol. 10, no. 3, pp. 233–239, 2007.
  • F.H. Ho, Graphite Design Handbook, General Atomics, San Diego, CA, 1988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.