121
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Fracture Mode of Martensite-Austenite Constituents Containing Multiphase Steel Controlled by Microstructural and Micromechanical Aspects

, , &
Pages 591-596 | Received 19 Dec 2011, Accepted 24 Apr 2013, Published online: 06 Mar 2015

References

  • Y.T. Zhao, C.J. Shang, S.W. Yang, X.M. Wang, and X.L. He, The metastable austenite transformation in Mo–Nb–Cu–B low carbon steel, Mater. Sci. Eng. A, vol. 433, pp. 169–174, 2006.
  • A. Lambert, J. Drillet, A.F. Gourues, T. Sturel, and A. Pineau, Microstructure of M–A constituent in HAZ of HSLA steel welds in relation with toughness properties, Sci. Technol. Weld. J., vol. 2, pp. 1–13, 2000.
  • Y.T. Zhao, S.W. Yang, C.J. Shang, X.M. Wang, W. Liu, and X.L. He, The mechanical properties and corrosion behaviors of ultra-low carbon microalloying steel, Mater. Sci. Eng. A, vol. 454–455, pp. 695–700, 2007.
  • H. Ikawa, H. Oshige, and T. Tanoue, Effect of martensite-austenite constituent on HAZ toughness of a high strength steel, Trans. Jpn. Weld. Soc., vol. 11, pp. 87–96, 1980.
  • H. Okada, F. Matsuda, K. Ikeuchi, and Z.L. Li, Toughness recovery for weld HAZ by post weld heat treatment, J. Jpn. Weld. Soc., vol. 12, pp. 521–527, 1994.
  • H. Okada, F. Matsuda, K. Ikeuchi, I. Hrivnak, and Z.L. Li, Metallographic investigation of M-A constituent, J. Jpn. Weld. Soc., vol. 12, pp. 236–242, 1994.
  • E. Bonnevie, G. Ferriere, A. Ikhlef, D. Kaplan, and J.M. Orain, Morphological aspects of martensite–austenite constituents in intercritical and coarse grain heat affected zones of structural steels, Mater. Sci. Eng. A, vol. 385, pp. 352–358, 2004.
  • Y.W. Shi and Z.X. Han, Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel, J. Mater. Process. Technol., vol. 207, pp. 30–39, 2008.
  • H.Y. Jing, L.X. Huo, Y.F. Zhang, M. Toyoda, and F. Minami, Morphological effect of martensite-austenite constituents on fracture toughness of weld HAZ, Chin. J. Mech. Eng., vol. 31, pp. 102–108, 1995.
  • W.W. Xu, Q.F. Wang, T. Pan, H. Su, and C.F. Yang, Effect of welding heat input on simulated HAZ microstructure and toughness of a V-N microalloyed steel, J. Iron Steel Res. Int., vol. 14, pp. 234–239, 2007.
  • J. Jang, J.B. Ju, B.W. Lee, D. Kwon, and W.S. Kim, Effects of microstructural change on fracture characteristics in coarse-grained heat-affected zones of QLT-processed 9% Ni steel, Mater. Sci. Eng. A, vol. 340, pp. 68–79, 2003.
  • Y. Kikuta, T. Araki, M. Yoneda, and J.H. Chen, Effect of martensite-austenite constituent on fracture behavior of weld zone of HSLA steel, J. Jpn. Mater. Sci. Soc., vol. 34, pp. 638–642, 1984.
  • J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda, Micro-fracture behaviour induced by M-A constituent (Island Martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel, Acta Metall., vol. 32, pp. 1779–1788, 1984.
  • S. Kim, D. Kang, T.-N. Kim, J. Lee, and C. Lee, Fatigue crack growth behavior of the simulated HAZ of 800 MPa grade high-performance steel, Mater. Sci. Eng. A, vol. 528, pp. 2331–2338, 2011.
  • Y. Zhong, F. Xiao, J. Zhang, Y. Shan, W. Wang, and K. Yang. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel, Acta Mater. vol. 54, pp. 435–443, 2006.
  • E. Bayraktar and D. Kaplan, Mechanical and metallurgical investigation of martensite–austenite constituents in simulated welding conditions, J. Mater. Process. Technol., vol. 153–154, pp. 87–92, 2004.
  • J.C.F. Jore, L.F.G. Souza, and J.M.A. Rebbello, Mechanical and metallurgical investigation of martensite–austenite constituents in simulated welding conditions, Mater. Charact., vol. 47, pp. 195–205, 2001.
  • R.M. Ale, J.M.A. Rebello, and J. Charlier, A metallographic technique for detecting martensite-austenite constituents in the weld heat-affected zone of a micro-alloyed steel, Mater. Charact., vol. 37, pp. 89–93, 1996.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., vol. 7, pp. 1564–1583, 1992.
  • K. Durst, B. Backes, O. Franke, and M. Goeken, Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations, Acta Mater., vol. 54, pp. 2547–2555, 2006.
  • M.F. Doerner and W.D. Nix, A method for interpreting the data form depth-sensing indentation instruments, J. Mater. Res., vol. 1, pp. 601–609, 1986.
  • K.S. Choi, A. Soulami, W.N. Liu, X. Sun, and M. Khaleel, Influence of various material design parameters on deformation behaviors of TRIP steels, Comput. Mater. Sci., vol. 50, no. 2, pp. 720–730, 2010.
  • X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel, Predicting failure modes and ductility of dual phase steels using plastic strain localization, Int. J. Plast., vol. 25, pp. 1888–1909, 2009.
  • X. Sun, K.S. Choi, A. Soulami, W.N. Liu, and M.A. Khaleel, On key factors influencing ductility of multi-phase steels, Mater. Sci. Eng. A, vol. 526, pp. 140–149, 2009.
  • D.A. Curry and J.F. Knott, Effect of microstructure on cleavage fracture stress in steel, Mater. Sci., vol. 11, pp. 511–514, 1978.
  • J.H. Chen, Q. Wang, G.Z. Wang, and Z. Li, Fracture behavior at crack tip—A new framework for cleavage mechanism of steel. Acta Mater., vol. 51, pp. 1841–1855, 2003.
  • G.Z. Wang and J.H. Chen, Cleavage fracture criterion of low alloy steel and weld metal in notched specimens, Int. J. Fract., vol. 89, pp. 269–284, 1998.
  • J.H. Chen, G.Z. Wang, and H.J. Wang, A statistical model for cleavage fracture of low alloy steel, Acta Mater., vol. 44, pp. 3979–3789, 1996.
  • M.G. Mendiratta, R.L. Goetz, and D.M. Dimiduk, Notch fracture in γ-titanium aluminides, Metall. Mater. Trans. A, vol. 27, pp. 3903–3012, 1996.
  • J.P. Bandstra, D.A. Koss, A. Geltmacher, P. Matic, and R.K. Everett, Modeling void coalescence during ductile fracture of a steel, Mater. Sci. Eng. A, vol. 366, pp. 269–281, 2004.
  • J. Wen, Y. Huang, K.C. Hwang, C. Liu, and M. Li, The modified Gurson model accounting for the void size effect, Int. J. Plast., vol. 21, pp. 381–395, 2005.
  • D. Broek, The role of inclusions in ductile fracture and fracture toughness, Eng. Fract. Mech., vol., pp. 55–56, 1973.
  • J.H. Chen, Physical models for cleavage fracture at various temperatures—Bases for local approach to fracture of HSLA steel, Mater. Sci. Eng. A, vol. 486, pp. 369–375, 2008.
  • G.Z. Wang, Y.L. Wang, F.Z. Xuan, S.T. Tu, and Z.D. Wang, Cleavage fracture behavior of a C–Mn vessel steel at various loading rates in notched specimens, Int. J. Press. Vessels Pip., vol. 85, pp. 720–727, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.