267
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Strain Rate Behavior of Closed-Cell Al-Si-Ti Foams: Experiment and Numerical Modeling

, , &
Pages 556-563 | Received 05 Apr 2012, Accepted 04 Feb 2013, Published online: 23 Feb 2015

References

  • J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., vol. 46, pp. 559–632, 2001.
  • I.W. Hall, M. Guden, and C.J. Yu, Crushing of aluminum closed cell foams: Density and strain rate effects, Scr. Mater., vol. 43, pp. 515–521, 2000.
  • L. Peroni, M. Avalle, and M. Peroni, The mechanical behaviour of aluminium foam structures in different loading conditions, Int. J. Impact Eng., vol. 35, pp. 644–658, 2008.
  • H. Zhao, I. Elnasri, and H. Li, The mechanism of strength enhancement under impact loading of cellular materials, Adv. Eng. Mater., vol. 8, pp. 877–883, 2006.
  • T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi, T.G. Nieh, and K. Higashi, Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading, Scr. Mater., vol. 40, pp. 921–927, 1999.
  • K.A. Dannemann and J. Lankford, High strain rate compression of closed-cell aluminium foams, Mater. Sci. Eng., A, vol. 293, pp. 157–164, 2000.
  • T. Mukai, T. Miyoshi, S. Nakano, H. Somekawa, and K. Higashi, Compressive response of a closed-cell aluminum foam at high strain rate, Scr. Mater., vol. 54, pp. 533–537, 2006.
  • C.M. Cady, G.T.I. Gray, C. Liu, M.L. Lovato, T. Mukai, D.P. Mondal, M.D. Goel, and S. Das, Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature, Mater. Sci. Eng., A, vol. 525, pp. 1–6, 2009.
  • H. Zhao, I. Elnasri, and S. Abdennadher, An experimental study on the behaviour under impact loading of metallic cellular materials, Int. J. Mech. Sci., vol. 47, pp. 757–774, 2005.
  • V.S. Deshpande and N.A. Fleck, High strain rate compressive behaviour of aluminium alloy foams, Int. J. Impact Eng., vol. 24, pp. 277–298, 2000.
  • R.E. Raj, V. Parameswaran, and B.S.S. Daniel, Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam, Mater. Sci. Eng., A, vol. 526, pp. 11–15, 2009.
  • S. Yu, Y. Luo, and H. Liu, Effects of strain rate and SiC particle on the compressive property of SiCp/AlSi9Mg composite foams. Mater. Sci. Eng., A, vol. 487, pp. 394–399, 2008.
  • Z.Y. Dou, L.T. Jiang, G.H. Wu, Q. Zhang, Z.Y. Xiu, and G.Q. Chen, High strain rate compression of cenosphere-pure aluminum syntactic foams, Scr. Mater., vol. 57, pp. 945–948, 2007.
  • Y.H. Mu, G.C. Yao, Z.K. Cao, H.J. Luo, and G.Y. Zu, Strain-rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam, Scr. Mater., vol. 64, pp. 61–64, 2011.
  • E.W. Andrews, G. Gioux, P. Onck, and L.J. Gibson, Size effects in ductile cellular solids. Part II: Experimental results, Int. J. Mech. Sci., vol. 43, pp. 701–713, 2001.
  • D.J. Frew, M.J. Forrestal, and W. Chen, Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar, Exp. Mech., vol. 45, pp. 186–195, 2005.
  • Y. Feng, Z.G. Zhu, F.Q. Zu, S.S. Hu, and Y. Pan, Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams, Mater. Charact., vol. 47, pp. 417–422, 2001.
  • L.L. Wang, Foundation of Stress Waves, National Defense Industry Press, Beijing, China, 2005.
  • M.J. Silva, W.C. Hayes, and L.J. Gibson, The effects of nonperiodic microstructure on the elastic properties of 2-dimensional cellular solids, Int. J. Mech. Sci., vol. 37, pp. 1161–1177, 1995.
  • C. Kádár, E. Maire, A. Borbély, G. Peix, J. Lendvai, and Z. Rajkovits, X-ray tomography and finite element simulation of the indentation behavior of metal foams, Mater. Sci. Eng., A, vol. 387, pp. 321–325, 2004.
  • G.W. Ma, Z.Q. Ye, and Z.S. Shao, Modeling loading rate effect on crushing stress of metallic cellular materials, Int. J. Impact Eng., vol. 36, pp. 775–782, 2009.
  • X.Y. Su, T.X. Yu, and S.R. Reid, Inertia-sensitive impact energy-absorbing structures. 2. Effect of strain-rate, Int. J. Impact Eng., vol. 16, pp. 673–689, 1995.
  • A. Paul and U. Ramamurty, Strain rate sensitivity of a closed-cell aluminum foam, Mater. Sci. Eng., A, vol. 281, pp. 1–7, 2000.
  • A. Tasdemirci, C. Ergonenc, and M. Guden, Split Hopkinson pressure bar multiple reloading and modeling of a 316 L stainless steel metallic hollow sphere structure, Int. J. Impact Eng., vol. 37, pp. 250–259, 2010.
  • F.S. Han, H.F. Cheng, Z.B. Li, and Q. Wang, The strain rate effect of an open cell aluminum foam. Metall. Mater. Trans. A, vol. 36A, pp. 645–650, 2005.
  • T. Mukai, H. Kanahashi, K.S.Y. Yamada, M. Mabuchi, T.G. Nieh, and K. Higashi, Dynamic compressive behavior of an ultra-lightweight magnesium foam, Scr. Mater., vol. 41, pp. 365–371, 1999.
  • C. Park and S.R. Nutt, Strain rate sensitivity and defects in steel foam, Mater. Sci. Eng., A, vol. 323, pp. 358–366, 2002.
  • Y.D. Liu, J.L. Yu, Z.J. Zheng, and J.R. Li, A numerical study on the rate sensitivity of cellular metals, Int. J. Solids Struct., vol. 46, pp. 3988–3998, 2009.
  • L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd Edition, Cambridge University Press, Cambridge, UK, 1997.
  • Z. Zheng, J. Yu, and J. Li, Dynamic crushing of 2D cellular structures: A finite element study, Int. J. Impact Eng., vol. 32, pp. 650–664, 2005.
  • G.H. Wu, Z.Y. Dou, D.L. Sun, L.T. Jiang, B.S. Ding, and B.F. He, Compression behaviors of cenosphere-pure aluminum syntactic foams, Scr. Mater., vol. 56, pp. 221–224, 2007.
  • W.G. Guo, Y.L. Li, and F.Z. Huang, Deformation and mechanical property of aluminium foam at different strain rates, Explos. Shock Waves, vol. 28, pp. 289–292, 2008.
  • L. Jing, Z.H. Wang, J.G. Ning, and L.M. Zhao, The dynamic response of sandwich beams with open-cell metal foam cores, Composites Part B, vol. 42, pp. 1–10, 2011.
  • Y.F. Zhang, Y.Z. Tang, G. Zhou, J.N. Wei, and F.S. Han, Dynamic compression properties of porous aluminum. Mater. Lett., vol. 56, pp. 728–731, 2002.
  • A.G. Hanssen, O.S. Hopperstad, M. Langseth, and H. Ilstad, Validation of constitutive models applicable to aluminium foams, Int. J. Mech. Sci., vol. 44, pp. 359–406, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.