267
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effective Moduli Evaluation of Carbon Nanotube Reinforced Polymers Using Micromechanics

, &
Pages 819-828 | Received 11 Sep 2012, Accepted 06 Nov 2013, Published online: 10 Apr 2015

References

  • D.R. Paul and L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, vol. 49, pp. 3187–3204, 2008.
  • J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, and I. Jasiuk, Experimental trends in polymer nanocomposites—A review, Mater. Sci. Eng., A, vol. 393, pp. 1–11, 2005.
  • S.C. Tjong, Structural and mechanical properties of polymer nanocomposites, Mater. Sci. Eng., R, vol. 53, pp. 173–197, 2006.
  • H. Fischer, Polymer nanocomposites: From fundamental research to specific applications, Mater. Sci. Eng., C, vol. 23, pp. 763–772, 2003.
  • R. Krishnamoorti and R.A. Vaia, Polymer nanocomposites, J. Polym. Sci., Part B: Polym. Phys., vol. 45, pp. 3252–3256, 2007.
  • A.J. Crosby and J.Y. Lee, Polymer nanocomposites: The “nano” effect on mechanical properties, Polym. Rev., vol. 47, pp. 217–229, 2007.
  • P. Laborde-Lahoz, W. Maser, T. Martínez, A. Benito, T. Seeger, P.R. Cano, G. de Villoria, and A. Miravete, Mechanical characterization of carbon nanotube composite materials, Mech. Adv. Mater. Struct., vol. 12, pp. 13–19, 2005.
  • S.A. Girei, S.P. Thomas, M.A. Atieh, K. Mezghani, S.K. De, and S. Bandyopadhyay, Effect of COOH functionalized carbon nanotubes on mechanical, dynamic mechanical and thermal properties of polypropylene nanocomposites, J. Thermoplast. Compos. Mater., vol. 25, pp. 333350, 2011. DOI: 10.1177/0892705711406159.
  • A. Aljaafari, M. Abu-Abdeen, and M. Aljaafari, Mechanical and electrical properties of poly (vinyl chloride) loaded with carbon nanotubes and carbon nanopowder, J. Thermoplast. Compos. Mater., vol. 25, pp. 679699, 2011. DOI: 10.1177/0892705711412650.
  • X.L. Xie, Y.W. Mai, and X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Mater. Sci. Eng., R, vol. 49, pp. 89–112, 2005.
  • S. Kanagaraj, F.R. Varanda, T.V. Zhil’tsova, M.S.A. Oliveira, and J.A.O. Simões, Mechanical properties of high density polyethylene/carbon nanotube composites, Compos. Sci. Technol., vol. 67, pp. 3071–3077, 2007.
  • S. Bal and S.S. Samal, Carbon nanotube reinforced polymer composites—A state of the art, Bull. Mater. Sci., vol. 30, pp. 379–386, 2007.
  • F.H. Gojny, M.H.G. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol., vol. 64, pp. 2363–2371, 2004.
  • N.G. Sahoo, S. Rana, J.W. Cho, L. Li, and S.H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci., vol. 35, pp. 837–867, 2010.
  • Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., vol. 35, pp. 357–401, 2010.
  • Y.S. Song and J.R. Youn, Modeling of effective elastic properties for polymer based carbon nanotube composites, Polymer, vol. 47, pp. 1741–1748, 2006.
  • Q.H. Zeng, A.B. Yu, and G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites, Prog. Polym. Sci., vol. 33, pp. 191–269, 2008.
  • B. Ashrafi and P. Hubert, Modeling the elastic properties of carbon nanotube array/polymer composites, Compos. Sci. Technol., vol. 66, pp. 387–396, 2006.
  • A. Haque and A. Ramasetty, Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites, Compos. Struct., vol. 71, pp. 68–77, 2005.
  • G. Huang, B. Wang, H. Lu, A. Mamedov, and S. Gupta, Material characterization and modeling of single-wall carbon nanotube/polyelectrolyte multilayer nanocomposites, J. Appl. Mech., vol. 73, pp. 737–744, 2006.
  • G.D. Smith, D. Bedrov, L. Li, and O. Byutner, A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites, J. Chem. Phys., vol. 117, pp. 9478–9489, 2002.
  • Y. Han and J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput. Mater. Sci., vol. 39, pp. 315–323, 2007.
  • A. Adnan, C.T. Sun, and H. Mahfuz, A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites, Compos. Sci. Technol., vol. 67, pp. 348–356, 2007.
  • M. Yang, V. Koutsos, and M. Zaiser, Interactions between polymers and carbon nanotubes: A molecular dynamics study, J. Phys. Chem., vol. 109, pp. 10009–10014, 2005.
  • A. Al-Ostaz, G. Pal, P.R. Mantena, and A. Cheng, Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents, J. Mater. Sci., vol. 43, pp. 164–173, 2008.
  • K. Lau, C. Gu, and D. Hui, A critical review on nanotube and nanotube/nanoclay related polymer composite materials, Composites Part B, vol. 37, pp. 425–436, 2006.
  • Y. Liu, N. Nishimura, and Y. Otani, Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method, Comput. Mater. Sci., vol. 34, pp. 173–187, 2005.
  • D. Luo, W.X. Wang, and Y. Takao, Effects of the distribution and geometry of carbon nanotubes on the macroscopic stiffness and microscopic stresses of nanocomposites, Compos. Sci. Technol., vol. 67, pp. 2947–2958, 2007.
  • S. Cantournet, M.C. Boyce, and A.H. Tsou, Micromechanics and macromechanics of carbon nanotube-enhanced elastomers, J. Mech. Phys. Solids, vol. 55, pp. 1321–1339, 2007.
  • D.C. Hammerand, G.D. Seidel, and D.C. Lagoudas, Computational micromechanics of clustering and interphase effects in carbon nanotube composites, Mech. Adv. Mater. Struct., vol. 14, pp. 277–294, 2007.
  • R.J. Young and S.J. Eichhorn, Deformation mechanisms in polymer fibres and nanocomposites, Polymer, vol. 48, pp. 2–18, 2007.
  • T. Gómez-del Río, P. Poza, J. Rodríguez, M.C. García-Gutiérrez, J.J. Hernández, and T.A. Ezquerra, Influence of single-walled carbon nanotubes on the effective elastic constants of poly (ethylene terephthalate). Compos. Sci. Technol., vol. 70, pp. 284–290, 2010.
  • S.K. Latifa and S. Chakraborty, Effective moduli of random short fiber composite: A probabilistic study, J. Reinf. Plast. Compos., vol. 23, pp. 751–760, 2004.
  • A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri, Mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Des., vol. 31, pp. 4202–4208, 2010.
  • M.K. Yeh, N.H. Tai, and Y.J. Lin, Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers, Composites Part A, vol. 39, pp. 677–684, 2008.
  • N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes, and R.E. Cohen, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, vol. 45, pp. 487–506, 2004.
  • L. Liu, A.H. Barber, S. Nuriel, and H.D. Wagner, Mechanical properties of functionalized single-walled carbon-nanotube/poly (vinyl alcohol) nanocomposites, Adv. Funct. Mater., vol. 15, pp. 975–980, 2005.
  • F. Dalmas, L. Chazeau, C. Gauthier, K. Masenelli-Varlot, R. Dendievel, and J.Y. Cavaille, Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties, J. Polym. Sci., Part B: Polym. Phys., vol. 43, pp. 1186–1197, 2005.
  • P.K. Valavala and G.M. Odegard, Modeling techniques for determination of mechanical properties of polymer, Rev. Adv. Mater. Sci., vol. 9, pp. 34–44, 2005.
  • R. Guzman de Villoria and A. Miravete, Mechanical model to evaluate the effect of the dispersion in nanocomposites, Acta Mater., vol. 55, pp. 3025–3031, 2007.
  • J. Aboudi, The effective moduli of short-fiber composites, Int. J. Solids Struct., vol. 19, pp. 693–707, 1983.
  • L. Sun, R.F. Gibson, F. Gordaninejad, and J. Suhr, Energy absorption capability of nanocomposites: A review. Compos. Sci. Technol., vol. 69, pp. 2392–2409, 2009.
  • J.D. Fidelus, E. Wiesel, F.H. Gojny, K. Schulte, and H.D. Wagner, Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites Part A, vol. 36, pp. 1555–1561, 2005.
  • G.X. Chen, H.S. Kim, B.H. Park, and J.S. Yoon, Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer, vol. 47, pp. 4760–4767, 2006.
  • P.C. Ma, J.K. Kim, and B.Z. Tang, Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites, Compos. Sci. Technol., vol. 67, pp. 2965–2972, 2007.
  • M. Wong, M. Paramsothy, X.J. Xu, Y. Ren, S. Li, and K. Liao, Physical interactions at carbon nanotube-polymer interface, Polymer, vol. 44, pp. 7757–7764, 2003.
  • B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M. Nolte, and K. Schulte, Fundamental aspects of nano-reinforced composites, Compos. Sci. Technol., vol. 66, pp. 3115–3125, 2006.
  • F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, and A.H. Windle, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, vol. 47, pp. 2036–2045, 2006.
  • Y. Geng, M.Y. Liu, J. Li, X.M. Shi, and J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A, vol. 39, pp. 1876–1883, 2008.
  • C.D. Hammerand, D.G. Seidel, and C.D. Lagoudas, Computational micromechanics of clustering and interphase effects in carbon nanotube composites, Mech. Adv. Mater. Struct., vol. 14, pp. 277–294, 2007.
  • D.L. Shi, X.Q. Feng, Y.Y. Huang, K.C. Hwang, and H. Gao, The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, J. Eng. Mater. Technol., vol. 126, pp. 250–257, 2004.
  • V. Buryachenko, V. Kushch, and A. Roy, Effective thermoelastic properties of random structure composites reinforced by the clusters of deterministic structure (application to clay nanocomposites), Acta Mech., vol. 192, pp. 135–167, 2007.
  • K.Q. Xiao, L.C. Zhang, and I. Zarudi, Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites, Compos. Sci. Technol., vol. 67, pp. 177–182, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.