367
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Indenter geometrical effects on sub-micro/nano indentation and scratch behaviors of polymeric surfaces

, , , &
Pages 291-300 | Received 27 Jan 2013, Accepted 12 Aug 2014, Published online: 29 Oct 2015

References

  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., vol. 7, pp. 1564–1583, 1992.
  • G.M. Pharr, W.C. Oliver, and F.R. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, J. Mater. Res., vol. 7, pp. 613–617, 1992.
  • M.F. Doerner and W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res., vol. 1, pp. 601–609, 1986.
  • G. Hochstetter, A. Jimenez, and J.L. Loubet, Strain-rate effects on hardness of glassy polymers in the nanoscale range: Comparison between quasistatic and continuous stiffness measurements, J. Macromol. Sci., Phys., vol. 38, pp. 681–692, 1999.
  • S. Bec, A. Tonck, J.M. Georges, E. Georges, and J.L. Loubet, Improvements in the indentation method with a surface force apparatus, Philos. Mag. A, vol. 74, pp. 1061–1072, 1996.
  • W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., vol. 19, pp. 3–20, 2004.
  • Y.T. Cheng and C.M. Cheng, Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids, Mater. Sci. Eng., A, vol. 409, pp. 93–99, 2005.
  • B.J. Briscoe, L. Fiori, and E. Pelillo, Nano-indentation of polymeric surfaces, J. Phys. D: Appl. Phys., vol. 31, pp. 2395–2405, 1998.
  • Z.Z. Wang, P. Gu, Z. Zhang, L. Gu, and Y.Z. Xu, Mechanical and tribological behavior of epoxy/silica nanocomposites at the micro/nano scale, Tribol. Lett., vol. 42, pp. 185–191, 2011.
  • D. Tranchida, S. Piccarolo, J. Loos, and A. Alexeev, Accurately evaluating Young's modulus of polymers through nanoindentations: A phenomenological correction factor to the Oliver and Pharr procedure, Appl. Phys. Lett., vol. 89, pp. 171905, 2006.
  • Z.Z. Wang, P. Gu, and Z. Zhang, Indentation and scratch behavior of nano-SiO2/polycarbonate composite coating at the micro/nano-scale, Wear, vol. 269, pp. 21–25, 2010.
  • D.M. Ebenstein and L.A. Pruitt, Nanoindentation of biological materials, Nano Today, vol. 1, pp. 26–33, 2006.
  • R.B. King, Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct., vol. 23, pp. 1657–1664, 1987.
  • J.C. Hay, A. Bolshakov, and G.M. Pharr, A critical examination of the fundamental relations used in the analysis of nanoindentation data, J. Mater. Res., vol. 14, pp. 2296–2305, 1999.
  • G.M. Pharr and A. Bolshakov, Understanding nanoindentation unloading curves, J. Mater. Res., vol. 17, pp. 2660–2671, 2002.
  • B. Tang and A.H.W. Ngan, Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials, J. Mater. Res., vol. 18, pp. 1141–1148, 2003.
  • M.L. Oyen and R.F. Cook, Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials, J. Mater. Res., vol. 18, pp. 139–150, 2003.
  • K. Ikezawa and T. Maruyama, Sharp tip geometry and its effect on hardness in nanoindentation, J. Appl. Phys., vol. 91, pp. 9689–9695, 2002.
  • M. Tyoyon and L.Y. Huang, Correction factor for contact area in nanoindentation measurements, J. Mater. Res., vol. 20, pp. 610–617, 2005.
  • M.M. Chaudhri, A note on a common mistake in the analysis of nanoindentation data, J. Mater. Res., vol. 16, pp. 336–339, 2001.
  • Y.Y. Lim and M.M. Chaudhri, Experimental investigations of the normal loading of elastic spherical and conical indenters on to elastic flats, Philos. Mag., vol. 83, pp. 3427–3462, 2003.
  • D. Tranchida and S. Piccarolo, Relating morphology to nanoscale mechanical properties: From crystalline to mesomorphic iPP, Polymer, vol. 46, pp. 4032–4040, 2005.
  • D. Tranchida, S. Piccarolo, J. Loos, and A. Alexeev, Mechanical characterization of polymers on nanometer scale through nanoindentation. A study on pile-up and viscoelasticity, Macromolecules, vol. 40, pp. 1259–1267, 2007.
  • E. Wornyo, K. Gall, F. Yang, and W. King, Nanoindentation of shape memory polymer networks, Polymer, vol. 48, pp. 3213–3225, 2007.
  • S. Soare, S.J. Bull, A.G. O’Neil, N. Wright, A. Horsfall, and J.M.M. dos Santos, Nanoindentation assessment of aluminium metallization: The effect of creep and pile-up, Surf. Coat. Technol., vol. 177, pp. 497–503, 2004.
  • Z.H. Wu, T.A. Baker, T.C. Ovaert, and G.L. Niebur, The effect of holding time on naoindentation measurements of creep in bone, J. Biomech., vol. 44, pp. 1066–1072, 2011.
  • K. Kese and Z.C. Li, Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter, Scripta Mater., vol. 55, pp. 699–702, 2006.
  • Y.H. Lee, U. Baek, Y.I. Kim, and S.H. Nahm, On the measurement of pile-up corrected hardness based on the early Hertzian loading analysis, Mater. Lett., vol. 61, pp. 4039–4042, 2007.
  • J.D. Nowak, K.A. Rzepiejewska-Malyska, R.C. Major, O.L. Warren, and J. Michler, In-situ nanoindentation in the SEM, Mater. Today, vol. 12, pp. 44–45, 2010.
  • L. Calabri, N. Pugno, A. Rota, D. Marchetto, and S. Valeri, Nanoindentation shape effect: Experiments, simulations and modelling, J. Phys.: Condens. Matter, vol. 19, pp. 395002, 2007.
  • I. Jauberteau, M. Nadal, and J.L. Jauberteau, Atomic force microscopy investigations on nanoindentation impressions of some metals: Effect of piling-up on hardness measurements, J. Mater. Sci., vol. 43, pp. 5956–5961, 2008.
  • Z.Z. Wang, P. Gu, X.P. Wu, H. Zhang, Z. Zhang, and M.Y.M. Chiang, Micro/nano-wear studies on epoxy/silica nanocomposites, Compos. Sci. Technol., vol. 79, pp. 49–57, 2013.
  • H. Zhang, Z. Zhang, K. Friedrich, and C. Eger, Property improvements of in situ epoxy nanocomposites with reduced interpartical distance at high nanosilica content, Acta Mater., vol. 54, pp. 1833–1842, 2006.
  • Hysitron Inc., TriboIndenter Users Manual, Hysitron Inc., Minneapolis, MN, pp. 85–97, 2003.
  • W.D. Nix and H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids, vol. 46, pp. 411–425, 1998.
  • J.A. Howell, J.R. Hellmann, and C.L. Muhlstein, Correlations between free volume and pile-up behavior in nanoindentation reference glasses, Mater. Lett., vol. 62, pp. 2140–2142, 2008.
  • J.L. Bucaille and E. Felder, Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nanoindentation test, J. Mater. Sci., vol. 37, pp. 3999–4011, 2002.
  • J.L. Bucaille, E. Felder, and G. Hochstetter, Experimental and three-dimensional finite element study of scratch test of polymers at large deformations, J. Tribol., vol. 126, pp. 372–379, 2004.
  • Z.Z. Wang, P. Gu, H. Zhang, Z. Zhang, and X.P. Wu, Finite element modeling of the indentation and scratch response of epoxy/silica nanocomposites, Mech. Adv. Mater. Struct., vol. 21, pp. 802–809, 2014. DOI: 10.1080/15376494.2012.707752.
  • T. Altebaeumer, B. Gotsmann, A. Knoll, G. Cherubini, and U. Duerig, Self-similarity and finite-size effects in nano-indentation of highly cross-linked polymers, Nanotechnology, vol. 19, pp. 475301, 2008.
  • Z.H. Xu and X.D. Li, Influence of equi-biaxial residual stress on unloading behavior of nanoindentation, Acta Mater., vol. 53, pp. 1913–1919, 2005.
  • A. Bolshakov, W.C. Oliver, and G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations, J. Mater. Res., vol. 3, pp. 760–768, 1996.
  • M.K. Khan, M.E. Fitzpatrick, S.V. Hainsworth, and L. Edwards, Effect of residual stress on the nanoindentation response of aerospace aluminium alloys, Comput. Mater. Sci., vol. 50, pp. 2967–2976, 2011.
  • A. Bolshakov and G.M. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res., vol. 13, pp. 1049–1058, 1997.
  • D. Tranchida, Z. Kiflie, and S. Piccarolo, Viscoelastic recovery behaviour following atomic force microscope nanoindentation of semi-crystalline poly(ethylene), Macromolecules, vol. 40, pp. 7366–7371, 2007.
  • S. Swaddiwudhipong, L.H. Poh, J. Hua, Z.S. Liu, and K.K. Tho, Modeling nanoindentation tests of glassy polymers using finite elements with strain gradient plasticity, Mater. Sci. Eng., A, vol. 404, pp. 179–187, 2005.
  • A.A. Elmustafa, Pile-up/sink-in of rate-sensitive nanoindentation creeping solids, Model. Simul. Mater. Sci. Eng., vol. 15, pp. 823–834, 2007.
  • J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, and T.A. Friedmann, Finite-element modeling of nanoindentation, J. Appl. Phys., vol. 85, p. 1460, 1999.
  • Y. Wang, D. Raabe, C. Kluber, and F. Roters, Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Mater., vol. 52, pp. 2229–2238, 2004.
  • J.N. Israelachvili, Microtribology and Microrheology of Molecularly Thin Liquid Film, CRC Press LLC, New York, pp. 24–66, 2001.
  • S. Lafaye and M. Troyon, On the friction behavior in nanoscratch testing, Wear, vol. 261, pp. 905–913, 2006.
  • D.D. Yuan, P.Z. Zhu, F.Z. Fang, and C. Qiu, Study of nanoscratching of polymers by using molecular dynamics simulations, Sci. China—Phys. Mech. Astron., vol. 56, pp. 1760–1769, 2013.
  • J. Goddard and H. Wilman, A theory of friction and wear during the abrasion of metals, Wear, vol. 5, pp. 114–135, 1962.
  • S.Z. Wen and P. Huang, Principles of Tribology, 3rd Edition, Tsinghua University Press, Beijing, China, 220 pp., 2008.
  • B.Y. Du, M.R. Van Landingham, Q.L. Zhang, and T.B. He, Direct measurement of plowing friction and wear of a polymer thin film using the atomic force microscope, J. Mater. Res., vol. 16, pp. 1487–1492, 2001.
  • C. Charitidis, Y. Panayiotatos, and S. Logothetidis, A quantitative study of the nano-scratch behavior of boron and carbon nitride films, Diam. Relat. Mater., vol. 12, pp. 1088–1092, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.