272
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Incorporating the grain boundary misorientation effects on slip activity into crystal plasticity

, &
Pages 865-872 | Received 10 Jan 2014, Accepted 18 Mar 2015, Published online: 01 Feb 2016

References

  • U.F. Kocks, C.N. Tomé, and H.R. Wenk, Texture and Anisotropy, 2nd Edition, Cambridge University Press, Cambridge, UK, 2000.
  • T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, and S.G. Sutter, On the fatigue behavior of ultrafine-grained IF steel, Int. J. Mater. Res., vol. 97, pp. 1328–1336, 2006.
  • P. Gabor, D. Canadinc, H.J. Maier, R.J. Hellmig, Z. Zuberova, and J. Estrin, The ınfluence of zirconium on the low-cycle fatigue response of ultrafine-grained copper, Metall. Mater. Trans. A, vol. 38, pp. 1916–1925, 2007.
  • T. Niendorf, D. Canadinc, H.J. Maier, and, I. Karaman, The role of heat treatment on the cyclic stress-strain response of ultrafine-grained ınterstitial-free steel, Int. J. Fatigue, vol. 30, pp. 426–436, 2008.
  • T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, and G.G. Yapici, Microstructure–mechanical property relationships in ultrafine-grained NbZr, Acta Mater., vol. 55, pp. 6596–6605, 2007.
  • E.D. Tabachnikova, V.Z. Bengus, V.V. Stolyarov, G.I. Raab, R.Z. Valiev, K. Csach, and J. Miskuf, The contribution of grain boundary dislocations to the plastic deformation of nanostructured titanium from the SD-effect of the yield stress, Mater. Sci. Eng., A, vol. 309–310, pp. 524–527, 2001.
  • D. Jia, K.T. Ramesh, and E. Ma, effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in ıron, Acta Mater., vol. 51, pp. 3495–3509, 2003.
  • E. Nes, B. Holmedal, E. Evangelista, and K. Marthinsen, Modelling grain boundary strengthening in ultra-fine grained aluminum alloys, Mater. Sci. Eng., A, vol. 410–411, pp. 178–182, 2005.
  • Y.G. Ko, D.H. Shin, K.-T. Park, and C.S. Lee, An analysis of the strain hardening behavior of ultra-fine grain pure titanium, Scr. Mater., vol. 54, pp. 1785–1789, 2006.
  • H. Petryk and S. Stupkiewicz, A quantitative model of grain refinement and strain hardening during severe plastic deformation, Mater. Sci. Eng., A, vol. 444, pp. 214–219, 2007.
  • S. Lefebvre, B. Devincre, and T. Hoc, Yield stress strengthening in ultrafine-grained metals: A two-dimensional simulation of dislocation dynamics, J. Mech. Phys. Solids, vol. 55, pp. 788–802, 2007.
  • M. Kazeminezhad, Simulation the ultra-fine microstructure evolution during annealing of metal processed by ECAP, Comput. Mater. Sci., vol. 43, pp. 309–312, 2008.
  • E. Biyikli, D. Canadinc, H.J. Maier, T. Niendorf, and S. Top, Three-dimensional modeling of the grain boundary misorientation angle distribution based on two-dimensional experimental texture measurements, Mater. Sci. Eng., A, vol. 527, pp. 5604–5612, 2010.
  • P.B. Hirsch, Mosaic structure, Prog. Mater. Sci., vol. 6, p. 236, 1956.
  • R.W.K. Honeycombe, In homogeneities in the plastic deformation of metal crystals. 2. X-ray and optical micrography of aluminium, J. Inst. Met., vol. 80, pp. 49–56, 1951–1952.
  • M. Wilkens, Application of X-ray topography to the analysis of the dislocation arrangement in deformed copper single crystals, Can. J. Phys., vol. 45, pp. 567–579, 1967.
  • H. Mughrabi and B. Obst, Misorientations and geometrically necessary dislocations in deformed copper crystals: A microstructural analysis of X-ray rocking curves, Z. Metallkd., vol. 96, pp. 688–697, 2005.
  • H. Mughrabi, Deformation-ınduced long-range ınternal stresses and lattice plane misorientations and the role of geometrically necessary dislocations, Philos. Mag., vol. 86, pp. 4037–4054, 2006.
  • D. Wu, R.S. Chen, W.N. Tang, and E.H. Han, Influence of texture and grain size on the room-temperature ductility and tensile behavior ın a Mg–Gd–Zn alloy processed by rolling and forging, Mater. Des., vol. 41, pp. 306–313, 2012.
  • K.J. Kim, D.Y. Yang, and J.W. Yoon, Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (equal channel angular extrusion) via routes A and C, Mater. Sci. Eng., A, vol. 527, pp. 7927–7930, 2010.
  • T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, and A. Frehn, Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel, Mater. Sci. Eng., A, vol. 527, pp. 2412–2417, 2010.
  • T. Niendorf, D. Canadinc, H.J. Maier, and I. Karaman, The role of grain size and distribution on the cyclic stability of titanium, Scr. Mater., vol. 60, pp. 344–347, 2009.
  • H. Beladi, I.B. Timokhin, Y. Estrin, J. Kim, B.C. De Cooman, and S.K. Kim, Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning ınduced plasticity steel with polycrystalline structure, Acta Mater., vol. 59, pp. 7787–7799, 2011.
  • S.M. Toker, F. Rubitschek, T. Niendorf, D. Canadinc, and H.J. Maier, Anisotropy of ultrafine-grained alloys under ımpact loading: The case of biomedical niobium–zirconium, Scr. Mater., vol. 66, pp. 435–438, 2012.
  • D. Canadinc, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Strain hardening behavior of aluminum alloyed Hadfield steel single crystals, Acta Mater., vol. 53, pp. 1831–1842, 2005.
  • E. Bayraktar, F.A. Khalid, and C. Levaillant, Deformation and fracture behaviour of high manganese austenitic steel, J. Mater. Process. Technol., vol. 147, pp. 145–154, 2004.
  • O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High manganese austenitic twinning ınduced plasticity steels: A review of the microstructure properties relationships, Curr. Opin. Solid State Mater. Sci., vol. 15, pp. 141–168, 2011.
  • I. Karaman, H. Sehitoglu, A.J. Beaudoin, Y.I. Chumlyakov, H.J. Maier, and C.N. Tomea, Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip, Acta Mater., vol. 48, pp. 2031–2047, 2000.
  • Y.N. Dastur, and W.C. Leslie, Mechanism of work hardening in Hadfield manganese steel, Metall. Trans. A, vol. 12, pp. 749, 1981.
  • D. Canadinc, H. Sehitoglu, H.J. Maier, D. Niklasch, and Y.I. Chumlyakov, Orientation evolution in Hadfield steel single crystals under combined slip and twinning, Int. J. Solids Struct., vol. 44, pp. 34–50, 2007.
  • B. Hutchinson and N. Ridley, On dislocation accumulation and work hardening in Hadfield steel, Scr. Mater., vol. 55, pp. 299–302, 2006.
  • D. Canadinc, H. Sehitoglu, and H.J. Maier, The role of dense dislocation walls on the deformation response of aluminum alloyed Hadfield steel polycrystals, Mater. Sci. Eng., A, vol. 454–455, pp. 662–666, 2007.
  • D. Barbier, N. Geya, S. Allain, N. Bozzolo, and M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Mater. Sci. Eng., A, vol. 500, pp. 196–206, 2009.
  • K.S. Choi, A. Soulami, W.N. Liu, X. Sun, and M.A. Khaleel, Influence of various material design parameters on deformation behaviors of TRIP steels, Comput. Mater. Sci., vol. 50, pp. 720–730, 2010.
  • K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel, Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions, Acta Mater., vol. 57, pp. 2592–2604, 2009.
  • R.F. Decker, Alloy design, using second phases, Metall. Trans., vol. 4, pp. 2495–2518, 1973.
  • N.J. Kim, Design of high performance structural alloys using second phases, Mater. Sci. Eng., A, vol. 449–451, pp. 51–56, 2007.
  • D. Canadinc, E. Biyikli, T. Niendorf, and H.J. Maier, Experimental and numerical ınvestigation of the role of grain boundary misorientation angle on the dislocation–grain boundary ınteractions, Adv. Eng. Mater., vol. 13, pp. 281–287, 2011.
  • D. Canadinc, C. Efstathiou, and H. Sehitoglu, On the negative strain rate sensitivity of Hadfield steel polycrystals, Scr. Mater., vol. 59, pp. 1103–1106, 2008.
  • R.A. Lebensohn and C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater., vol. 41, pp. 2611–2624, 1993.
  • I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier, Deformation of single crystal Hadfield steel by twinning and slip, Acta Mater., vol. 48, pp. 1345–1359, 2000.
  • D. Canadinc, I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, and H.J. Maier, The role of nitrogen on the stress-strain response of Hadfield steel single crystals, Metall. Mater. Trans. A, vol. 34, pp. 1821–1831, 2003.
  • J.A. Venables, The nucleation and propagation of deformation twins, J. Phys. Chem. Solids, vol. 25, pp. 693–700, 1964.
  • G. Saada, On hardening due to the recombination of dislocations, Acta Metall., vol. 8, pp. 841–847, 1960.
  • R.A. Lebensohn and C.N. Tomé, Manual for Code Visco-Plastic Self-Consistent (Version 5), Los Alamos National Laboratory, Albuquerque, NM, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.