395
Views
17
CrossRef citations to date
0
Altmetric
Original Article

A hysteresis model for a stacked-type piezoelectric actuator

&
Pages 73-87 | Received 22 Feb 2015, Accepted 29 Sep 2015, Published online: 05 Aug 2016

References

  • T. Tjahjowidodo, Theoretical analysis of the dynamic behavior of presliding rolling friction, Mech. Syst. Sig. Process., vol. 29, pp. 296–309, 2012.
  • T. Tjahjowidodo, F. Al-Bender, and H. Van Brussel, Theoretical modelling and experimental identification of nonlinear torsional behaviour in harmonic drives, Mechatronics, vol. 23, no. 5, pp. 497–504, 2013.
  • T.V. Minh, T. Tjahjowidodo, H. Ramon, and H. Van Brussel, Control of a pneumatic artificial muscle (PAM) with model-based hysteresis compensation, Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, pp. 1082–1087, July 14–17, 2009.
  • T.V. Minh, T. Tjahjowidodo, H. Ramon, and H. Van Brussel, Non-local memory hysteresis in a pneumatic artificial muscle (PAM), Proceedings of the 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, pp. 640–645, June 24–26, 2009.
  • T.N. Do, T. Tjahjowidodo, M.W.S. Lau, T. Yamamoto, and S.J. Phee, Hysteresis modelling and position control of tendon-sheath mechanism in flexible endoscopic systems, Mechatronics, vol. 24, no. 1, pp. 12–22, 2014.
  • V. Hassani, and T. Tjahjowidodo, Structural response investigation of a triangular-based piezoelectric drive mechanism to hysteresis effect of the piezoelectric actuator, Mech. Syst. Sig. Process., vol. 36, no. 1, pp. 210–223, 2013.
  • V. Hassani, T. Tjahjowidodo, and T.N. Do, A survey on hysteresis modeling, identification and control, Mech. Syst. Sig. Process., vol. 49, pp. 209–233, 2014.
  • D.W. Song and C.J. Li, Modeling of piezo actuator's nonlinear and frequency dependent dynamics, J. Mechatron., vol. 9, pp. 391–410, 1999.
  • H. Hu and R. Ben Mrad, On the classical Preisach model for hysteresis in piezoceramic actuators, J. Mechatron., vol. 13, pp. 85–94, 2002.
  • A. Raghavan, P. Seshu, and P.S. Gandhi, Hysteresis modelling in piezoceramic actuator systems, J. Smart Mater. Struct. Syst., vol. 5062, pp. 560–567, 2003.
  • M.R. Zakerzadeh, H. Sayyadi, and M.A. Vaziri Zanjani, Characterizing hysteresis nonlinearity behavior of SMA actuators by Krasnosel'skii-Pokrovskii model, J. Appl. Math., vol. 1, pp. 28–38, 2011.
  • M. Zhou, S. Wang, and W. Gao, Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model, Appl. Math., vol. 2013, 2013.
  • V.W. Glenn, C.L. Dimitris, and K.J. Andrew, Hysteresis modeling of SMA actuators for control applications, J. Intell. Mater. Struct., vol. 9, pp. 432–448, 1998.
  • W.S. Galinaitis and R.C. Rogers, Control of hysteretic actuator using inverse hysteresis compensation, Proc. SPIE, Int. Soc. Opt. Eng., vol. 3323, pp.267–277, 1998.
  • H. Jiang, H.L. Ji, J.H. Qiu, and Y.S. Chen, A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, pp. 1200–1210, 2010.
  • M. Al Janaideh, C.Y. Su, and S. Rakehja, Modeling hysteresis of smart actuators, Proceedings of the 5th International Symposium on Mechatronics and its Application (ISM08), Montreal, Canada, August 6–8, 2008.
  • W. Dong, D. Zaili, J. Niandong, and Y. Shuai, An asymmetric PI hysteresis model for piezoceramics in nanoscale AFM imaging, 2011 IEEE International Conference on Nano/Micro Engineering and Molecular Systems, pp. 1075–1079, China, February 20–23, 2011.
  • M. Al Janaideh, S. Rakheja, and C.Y. Su, Characterization of rate dependent hysteresis of piezoceramic actuators, 13th International Carpathian Conference, pp. 550–556, Montreal, Canada, August 5–8, 2007.
  • M. Al Janaideh, S. Rakheja, and C.Y. Su, Modeling rate-dependent symmetric and asymmetric hysteresis loops of smart actuators, Int. J. Adv. Mech. Syst., vol. 1, pp. 32–43, 2008.
  • M. Al Janaideh, S. Rakehja, and C.Y. Su, Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator, J. Mechatron., vol. 19, pp. 656–670, 2009.
  • W.T. Ang, F.A. Garmon, P.K. Khosla, and C.N. Riviere, Modeling rate-dependent hysteresis in piezoelectric actuators, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1975–1980, Pittsburgh, PA, October 27–31, 2003.
  • Q. Yanding, T. Yanling, Z. Dawei, and B. Shirinzadeh, A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward application, IEEE/ASME Trans. Mechatron., vol. 18, pp. 981–989, 2013.
  • P. Krejci and K. Kuhnen, Inverse control of systems with hysteresis and creep, IEEE Proc. Control Theory Appl., vol. 148, pp. 185–192, 2001.
  • K. Kuhnen and H. Janocha, Complex hysteresis modeling of a broad class of hysteretic nonlinearities, 8th International Conference on New Actuators, Bremen, Germany, June, 2002.
  • M. Al Janaideh, Y. Feng, S. Rakheja, C.Y. Su, and C.A. Rabbath, Hysteresis compensation for smart actuators using inverse generalized Prandtl-Ishlinskii model, Am. Control Conf., vol. 1–9, pp. 307–312, 2009.
  • X.S. Wang, Y.M. Mao, X.J. Wang, and C.Y. Su, Adaptive variable structure control of hysteresis in GMM actuators based on prandtl-Ishlinskii model, IECON: 33rd Annual Conference IEEE Industrial and Electronics Society, vol. 1–3, pp. 721–726, Taipei, Taiwan, November 5–8, 2007.
  • G.M. Clayton, S. Tien, K.K. Leang, Q. Zou, and S. Devasia, A review of feedforward control approaches in nanopositioning for high-speed SPM, J. Dyn. Syst. Meas. Contr., vol. 131, 061101, 2009.
  • K.K. Leang and S. Devasia, Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators, IEEE Trans. Control Syst. Technol., vol. 15, pp. 927–935, 2007.
  • O. Aljanaideh, S. Rakheja, and C.Y. Su, Compensation of piezoceramic actuator hysteresis nonlinearities using the stop operator-based Prandtl-Ishlinskii model, International Conference on Modeling, Identification and Control (ICMIC), pp. 364–369, Montreal, Canada, July 17–19, 2010.
  • M. Rakotondrabe, Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoelectric actuators, American Control Conference, pp. 1646–1651, Besancon, France, June 27–29, 2012.
  • Q. Wang, C.Y. Su, and S.S. Ge, A direct method for robust adaptive nonlinear control with unknown hysteresis, 44th IEEE Conference on Decision and Control & European Control Conference, vol. 1–8, pp. 3578–3583, Montreal, Canada, December 15, 2005.
  • S. Devos, Development of fast, stiff and high-resolution piezoelectric motors with integrated bearing-driving functionality, Ph.D. Dessertation, Catholic University Leuven, Brussels, Belgium, 2006.
  • I.D. Mayergoyz, Dynamic preisach models of hysteresis, IEEE Trans. Magn., vol. 24, pp. 2925–2927, 2988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.